网站地图联系我们所长信箱内部网English中国科学院
 
 
首页概况简介机构设置研究队伍科研成果实验观测合作交流研究生教育学会学报图书馆党群工作创新文化科学传播信息公开
  新闻动态
  您现在的位置:首页 > 新闻动态 > 研究亮点
李金华等-EM:环境趋磁细菌单细胞鉴定和综合研究技术路线图
2022-08-18 | 作者: | 【 】【打印】【关闭

  摘要:微生物是地球上最古老且延续至今的生命形式。它们种类繁多、功能多样、分布极广、数量庞大,扮演着生产者、消费者和分解者的角色,参与近40亿年的地球演化,并且还在持续影响地球的物质元素循环和气候环境变迁等。开展现代环境中微生物多样性和地质记录中微生物化石综合研究,是理解微生物参与地球和生命演化过程和机制的关键所在。尽管微生物的研究已有三百多年的历史,然而目前成功分离培养的微生物仅占0.1%-1.0%,自然界中仍有大量不可培养微生物资源有待挖掘和开发利用。近日,中国科学院地质与地球物理研究所李金华研究员与潘永信院士生物地磁学团队联合法国巴黎第六大学、澳大利亚国立大学等国内外多个单位科研人员,将微生物分子生态学与电子显微学技术相结合,在单细胞水平上,实现了环境样品中脱硫菌门趋磁细菌的特异性鉴定和生物矿化研究。针对环境中大量的未培养趋磁细菌,该项研究还提出了单细胞鉴定和综合研究技术路线图,为地质微生物的种类鉴定及生物地球化学关联研究提供了新思路。 

本研究提出的环境趋磁细菌单细胞鉴定和综合研究技术路线图:
步:趋磁细菌分离或收集(A-E)。A. 野外采集含趋磁细菌的沉积物或水体样品。B. 实验室建立有氧-无氧过渡区(OATZ)微环境,富集培养环境趋磁细菌。C. 通过过滤或其他非磁性方法从分层水柱或沉积物中浓缩细菌(包括趋磁细菌)D. 单细胞显微操作分选目标趋磁细菌细胞。E. 利用各种磁分离装置收集活的趋磁细菌细胞。
步:单细胞水平细菌种类和磁小体结构关联鉴定(F-I)。F. 利用通用或类群特异性引物扩增趋磁细菌细胞的16S rRNA基因测序。G. 基于目标16S rRNA基因序列设计类群/物种特异性寡核苷酸探针。H. 利用荧光标记的类群/物种特异性探针对目标趋磁细菌细胞进行荧光原位杂交实验。I. 在单细胞水平上对经荧光标记的细胞开展“荧光显微镜—扫描/透射电镜”或“荧光显微镜—聚焦离子束—扫描电镜”关联分析。
-步:趋磁细菌单细胞水平综合显微学关联研究(J-L)。J. 同步辐射扫描透射X-射线显微镜对趋磁细菌细胞开展化学组成和磁学性质分析(纳米尺度)。K. 综合透射电镜对趋磁细菌和磁小体进行结构、形貌、磁性和化学成分分析(原子尺度)。L. 纳米二次离子质谱对趋磁细菌细胞进行化学元素和同位素分析(纳米尺度)。  
   

  一、硫酸盐还原趋磁细菌 

  趋磁细菌是经典的地磁微生物和地质微生物功能群,它们广泛分布于各种水体环境中,在细胞内合成膜包被的纳米磁铁矿(Fe3O4)或(Fe3S4)晶体颗粒,也叫磁小体。趋磁细菌可以感知地磁场,并在地质记录中形成磁小体化石,因而是生物矿化、生物地磁学和古地磁学研究的理想模式系统。 

  趋磁细菌种类和形貌极其多样,但对生长条件要求极其苛刻,因而实验室纯培养非常困难。建立不依赖纯培养的综合研究体系,在单细胞水平上实现趋磁细菌的生物学、矿物学和磁学综合研究,是全面且深入认识趋磁细菌多样性和磁小体生物矿化机制的关键所在。 

  在众多类群中,隶属于脱硫菌门的硫酸盐还原趋磁细菌尤为独特。已知的变形菌门、硝化螺菌门和暂定杂食菌门趋磁细菌只能合成磁铁矿成分的磁小体,且都是单细胞原核生物。与它们不同,脱硫菌门趋磁细菌中,除了能合成磁铁矿型磁小体,也能合成胶黄铁矿型磁小体,除了有单细胞型,还有多细胞型。从生态学上讲,脱硫菌门微生物主要以硫酸盐为电子最终受体,进行厌氧呼吸,因此在自然界的硫-碳循环中起关键作用。 

  二、西安未央湖硫酸盐还原趋磁细菌的发现和鉴定 

  自上世纪八十年代以来,国内外多个研究团队陆续在海洋和盐碱湖等环境中发现并鉴定了多种硫酸盐还原趋磁细菌。然而,对淡水环境中的硫酸盐还原细菌鲜有报道和缺乏深入研究。2013年,中国科学院地质与地球物理研究所生物地磁学研究团队在西安未央湖和护城河中,通过16S rRNA基因序列检测和透射电镜观测,首次在淡水环境中发现了多种硫酸盐还原趋磁细菌(Wang et al., 2013; 陈海涛等,2013)。随后,研究团队通过建立的“荧光显微镜-扫描电镜”联用技术(Li et al., 2017),从西安未央湖中鉴定了一株新的淡水硫酸盐还原趋磁杆菌WYHR-1,在细胞内合成子弹头形磁铁矿晶体颗粒,沿[001]方向拉长,具有典型的多阶段晶体生长模式,在细胞内组装成2-3条紧密排列的磁小体链束结构 (Li et al., 2019, 2020)。然而,由于丰度低,且与其它门类趋磁细菌混合存在,其它种类硫酸盐还原趋磁细菌的鉴定和生物矿化研究并未成功。 

  在本研究中,研究团队设计了特异性上游引物390F,与下游引物1492R配合使用,特异性地检测环境样品中硫酸盐还原趋磁细菌。实验结果表明,利用细菌通用引物对27F/1492R对环境趋磁细菌样品的16S rRNA基因序列进行扩增,只能得到相对丰度高的α-变形菌纲趋磁螺旋菌WYHS-1的基因序列。然而,利用390F/1492R引物对,对同一个环境趋磁细菌样品的16S rRNA基因序列进行扩增,成功地获得了三条新的硫酸盐还原趋磁细菌16S rRNA基因序列,分别命名为菌株WYHR-2WYHR-3WYHR-4(图1)。生物信息学分析证实,尽管390F/1492R引物对,对脱硫菌门微生物的覆盖度低于27F/1492R引物对(前者20.6%,后者为32.2%),然而对其它细菌门类的覆盖度仅有0.5%,远远低于27F/1492R26.0%,因此可以作为类群特异性引物对,从环境样品中特异性地检测脱硫菌门细菌。 

1 未央湖淡水硫酸盐还原趋磁细菌WYHR-2WYHR-3WYHR-4的系统发育树

  他们进一步采用三种不同策略,在单细胞水平上分别对这三种新的趋磁细菌开展生物学种类与磁小体结构的关联鉴定和研究。 

  1)荧光扫描电镜联用(FISH-SEM)鉴定WYHR-2(图2)。结果显示,菌株WYHR-2为平均长度为2.9 ± 0.6 μm,平均宽度为1.5 ± 0.3 μm (n = 29)的杆状细胞,合成58 ± 16个平均长度为77.9 ± 22.3 nm,平均宽度为31.4 ± 5.8 nm (n = 681; 共分析29个细胞)的排列成一条链束状结构的直子弹头形磁铁矿成分的磁小体。 

  2)荧光透射电镜联用(FISH-TEM)鉴定WYHR-3(图3)。结果显示,WYHR-3除了合成 33 ± 13个平均长度为71.0 ± 18.7 nm,平均宽度为30.3 ± 4.9 nm (n = 846; 共分析31个细胞)的直子弹头形磁铁矿成分的磁小体外,还合成18 ± 11个平均长度53.7 ± 13.1 nm,平均宽度44.0 ± 9.7 nm的立方体或棱柱形胶黄铁矿成分的磁小体。 

  3)荧光—聚焦离子束-扫描电镜(FISH-FIB-SEM)鉴定WYHR-4(图4)。结果显示,WYHR-4也能在细胞内同时合成磁铁矿型和胶黄铁矿型磁小体。 

2 趋磁细菌WYHR-2FISH-SEM关联分析 

3 趋磁细菌WYHR-3FISH-TEM关联分析。使用TEM是因为,WYHR-3细胞相对较大较厚, SEM不能获得相对清晰的磁小体图像 

4 趋磁细菌WYHR-4FISH-FIB-SEM关联分析。使用FIB-SEM是因为,WYHR-4细胞相对较大较厚,单纯的SEM并不能获得相对清晰的磁小体图像,同时由于WYHR-4丰度太低,并不适合FISH-TEM关联分析。因此,在本研究中采用FISH-SEM将目标细菌共定位后,采用聚焦离子束技术(FIB)将目标细菌逐层切开,然后使用SEM对细胞内的磁小体进行形貌和成分分析    

  三、硫酸盐还原趋磁细菌磁小体晶型和矿化机制 

  完成了三株新的未培养硫酸盐还原趋磁细菌的种类鉴定后,他们进一步采用先进的透射电镜技术对其磁小体晶型和矿化机制开展研究(图5-6),并与前人以及他们前期的研究结果进行对比。结果表明: 

  1)脱硫菌门趋磁细菌合成的磁铁矿型磁小体,通常不弯曲,颗粒多沿[001]拉长,底端可保留一个大且平整的{001}面(如WYHR-1WYHR-2)。然而,硝化螺菌门趋磁细菌合成的磁铁矿型磁小体,通常为弯曲形状,颗粒底端多保留为一个大且平整的{111}面,最终沿[001]拉长。这表明,磁小体的形状与趋磁细菌门类相关,地质记录中直的和弯曲形子弹头形磁小体化石可以用来指示上述两类趋磁细菌及其古环境。 

  2)与磁铁矿磁小体的结晶度高且通常至少保留一个可明显识别的晶面相比,胶黄铁矿磁小体的结晶度相对较差,形状多变,颗粒外围晶面欠发育且难识别。与棱柱形磁铁矿磁小体(变形菌门趋磁细菌合成)多沿磁铁矿晶体的[111]晶面拉长不同,棱柱形胶黄铁矿磁小体沿胶黄铁矿的晶体[001]方向拉长,其生长机制和磁学性质值得进一步深入研究。 

5 趋磁细菌WYHR-2及其磁小体的形貌、尺寸和链束结构特征 

6 趋磁细菌WYHR-3的磁铁矿(A-C)和胶黄铁矿(D-F)磁小体的形貌和晶型

  研究成果发表于国际学术期刊Environmental Microbiology李金华*, 刘沛余, Menguy NicolasBenzerara Karim,白金伶,赵翔,Leroy Eric,张朝群,张衡,刘嘉玮,张荣荣,朱珂磊,Roberts Andrew潘永信. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: Strategy for culture-independent study[J]. Environmental Microbiology, 2022. DOI: 10.1111/1462-2920.16109)。研究受中国国家自然科学基金重点国际(地区)合作研究项(41920104009)、国家自然科学基金重大项目课题(41890843)和国家自然科学基金创新研究群体项目(41621004)资助。 

 
地址:北京市朝阳区北土城西路19号 邮 编:100029 电话:010-82998001 传真:010-62010846
版权所有© 2009- 中国科学院地质与地球物理研究所 京ICP备05029136号 京公网安备110402500032号