贵阳分部广州分部
网站地图联系我们所长信箱建议留言内部网English中国科学院
 
 
首页概况简介机构设置研究队伍科研成果实验观测合作交流研究生教育学会学报图书馆党群工作创新文化科学传播信息公开
  研究队伍
科研系列
技术系列
  您现在的位置:首页 > 研究队伍 > 研究员

姓名 陈景波 性别:
职称 研究员 学历 博士
电话 010-82998156 传真: 010-62010846
Email: chenjb@mail.iggcas.ac.cn 邮编: 100029
地址 北京市朝阳区北土城西路19号, 中国科学院地质与地球物理研究所。
更多信息:
 
简历:

  陈景波,男,博士,研究员,博士生导师。2001年6月在中国科学院数学与系统科学研究院获博士学位,2001年7月至2003年8月在中国科学院理论物理研究所做博士后,2003年9月到中国科学院地质与地球物理研究所油气资源室工作。担任勘探地球物理学家学会(SEG)会员和美国数学学会数学评论评论员。担任国内外多种学术期刊的评审和SEG年会论文的评审。主持和参加完成国家自然科学基金项目、973项目和863项目多项。
    主要研究领域包括地震波数值模拟、地震偏移成像、全波形反演和微分方程保结构算法等。在地震波数值模拟方面,发展了地震波数值模拟的保结构算法,在保持算法的效率的基础上提高了算法的整体精度;在地震偏移成像方面,系统地发展了地震波算子的可分近似理论和算法,提高了地震波算子的近似算法在强横向变速地质条件下的精度, 同时保持了算法的效率;在全波形反演方面,发展了基于相速度和波场衰减传播速度相耦合的复频率域波动方程数值分析理论,提出了作为复频率域全波形反演基础的复频率域数值模拟的平均导数方法,不仅减少了数值频散,而且适用于不同的方向采样间隔,增加了方法的灵活性并拓展了应用范围。已发表学术论文77篇,其中SCI收录70篇。

 
研究方向:

地震波传播和成像

 
学科类别:
地球物理学
 
职务:
 
社会任职:
 
获奖及荣誉:
 
承担科研项目情况:
  1. 频率域波动方程高阶平均导数优化方法的研究和应用, 国家自然科学基金, 2015.1-2018.12, 主持。
  2. 地震波传播与成像保持效率的高精度算法的研究, 国家自然科学基金, 2013.1-2016.12, 主持。
  3. 地震成像几何算法及GPU/CPU协同并行计算, 国家自然科学基金, 2010.1-2012.12, 主持。 
  4. 三维地震偏移成像最优可分近似理论和算法, 国家自然科学基金, 2008.1-2010.12, 主持。
  5. 三维波动方程叠前偏移的几何算法, 国家自然科学基金, 2005.1-2007.12, 主持。
  6. 保持动力学特性的地震成像方法, 973项目, 2007-2011, 参加。
  7. 海量三维地震数据深层成像技术与装备, 863项目, 2011-2015, 参加。
  8. 角度道集合成技术和层间多次波压制方法, 863项目, 2006-2010, 参加。
 
代表论著:
  1. Hao Wang and Jing-Bo Chen*, 2023, Frequency-domain elastic wave modeling for vertically isotropic media with an average-derivative optimal method, Geophysics, 88(5), T237-T258.
  2. Shu-Li Dong and Jing-Bo Chen*, 2023, Finite-difference modeling of 3D frequency-domain elastic wave equation using an affine mixed-grid method, Geophysics, 88(2), T45-T63.
  3. Shu-Li Dong and Jing-Bo Chen*, 2022, An affine generalized optimal scheme with improved free-surface expression using adaptive strategy for frequency-domain elastic wave equation, Geophysics, 87(3), T183-T204.
  4. Jing-Bo Chen, Jian Cao and Zheng Li, 2021, A comparative study on the stress image and adaptive parameter-modified methods for implementing free surface boundary conditions in elastic wave numerical modeling, Geophysics, 86(6), T451-T467.
  5. Jing-Bo Chen, 2020, A new method for numerical dispersion analysis of Laplace-domain 2-D elastic wave equation, Exploration Geophysics, 51, 456-468.
  6. Jing-Bo Chen and Jian Cao, 2020, Green's function for three-dimensional elastic wave equation with a moving point source on the free surface with applications, Geophysical Prospecting, 68, 1281-1290.
  7. Jing-Bo Chen and Jian Cao, 2018, An average-derivative optimal scheme for modeling of the frequency-domain 3D elastic wave equation, Geophysics, 83(4), T209-T234.
  8. Jing-Bo Chen and Meng-Xue Dai, 2017, Accuracy-constrained  optimization methods for staggered-grid elastic wave modelling,  Geophysical Prospecting, 65(S1), 150-165.
  9. Jing-Bo Chen and Jian Cao, 2016, Modeling of frequency-domain elastic wave equation with an average-derivative method,  Geophysics, 81(6), T339-T356.  [PDF]
  10. Jing-Bo Chen, 2016, Numerical dispersion analysis for three-dimensional Laplace-Fourier-domain  scalar wave equation, Exploration Geophysics, 47, 158-167.  [PDF]
  11. Jing-Bo Chen, 2014, Dispersion analysis of an average-derivative optimal scheme for Laplace-domain scalar wave equation, Geophysics, 79(2), T37-T42. [PDF]
  12. Jing-Bo Chen, 2014, Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation, Geophysical Journal International, 197(3), 1681-1692. [PDF]
  13. Jing-Bo Chen, 2014, A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method, Geophysical Prospecting, 62, 258-277. [PDF]
  14. Jing-Bo Chen and Shu-Hong Cao, 2014, Comparison of two schemes for Laplace-domain scalar wave quation, Journal of Applied Geophysics, 108, 194-198. [PDF]
  15. Jing-Bo Chen, 2013, A generalized optimal 9-point scheme for frequency-domain scalar wave equation, Journal of Applied Geophysics, 92, 1-7. [PDF]
  16. Jing-Bo Chen, 2012, An average-derivative optimal scheme for frequency-domain scalar wave equation,Geophysics, 77(6), T201-T210. [PDF]
  17. Jing-Bo Chen, Guo-Feng Liu and Hong Liu, 2012, Seismic imaging based on spectral differentiation matrix and GPU implementation, Journal of Applied Geophysics, 79, 1-5. [PDF]
  18. Jing-Bo Chen, 2011, A stability formula for Lax-Wendroff methods with fourth-order in time and general-order in space for the scalar wave equation, Geophysics, 76(2), T37-T42. [PDF]
  19. Jing-Bo Chen, 2010, On the selection of reference velocities for split-step Fourier and generalized-screen migration methods, Geophysics, 75(6), S249-S257. [PDF]
  20. Jing-Bo Chen and Shu-Yuan Du, 2010, Kinematic characteristics and the influence of reference velocities of phase shift plus interpolation and extended split step Fourier migration methods, Geophysical Prospecting,  58, 429-439. [PDF]
  21. Jing-Bo Chen, 2009, Lax-Wendroff and Nystr?m methods for seismic modeling,  Geophysical Prospecting, 57, 931-941. [PDF]
  22. Jing-Bo Chen, 2007, High-order time discretizations in seismic modeling, Geophysics, 72(5), SM115-SM122. [PDF]
  23. Jing-Bo Chen, Hong Liu and Zhi-Fu Zhang, 2007, A separable-kernel decomposition method for approximating the DSR continuation operator, Geophysics, 72(1), S25-S31. [PDF]
  24. Jing-Bo Chen and Hong Liu, 2006, Two kinds of separable approximations for the one-way wave operator, Geophysics, 71(1), T1-T5. [PDF]
  25. Jing-Bo Chen, 2006, Modeling the scalar wave equation with Nystr?m methods, Geophysics, 71(5), T151-T158. [PDF]
  26. Jing-Bo Chen and Hong Liu, 2004, Optimization approximation with separable variables for the one-way wave operator, Geophysical Research  Letters, 31, L06613. [PDF]
  27. Jing-Bo Chen and Hong Liu, 2008, Modal expansion of one-way operators based on spectral differentiation matrix, Appl. Math. Comp., 206, 193-197.
  28. Jing-Bo Chen and Hong Liu, 2008, Derivation of Lagrangian density for the 'good' Boussinesq equation and multisymplectic discretizations, Appl. Math. Comp., 204, 58-62.
  29. Jing-Bo Chen, 2008, Variational integrators and the finite element method, App. Math. Comp., 196, 941-958.
  30. Jing-Bo Chen and Hong Liu, 2008, Two kinds of square conservative integrators for nonlinear evolution equations, Chin. Phys. Lett., 25, 1168-1171.
  31. Jing-Bo Chen and Hong Liu, 2008, Multisymplectic pseudospectral discretizations for (3+1)-dimensional Klein-Gordon equation, Commun. Theor. Phys., 50, 1502-1504.
  32. Jing-Bo Chen, Meng-Zhao, Qin and Rudolf Scherer, 2008, Multisymplectic and variational integrators, Inter. J. Pure. Appl. Math., 44, 509-536.
  33. Jing-Bo Chen, Hong Liu and Deng-Guo Zhou, 2007, A Hamiltonian framework for wavefield depth continuation in seismic imaging, Wave Motion, 44, 385-394.
  34. Jing-Bo Chen and Shu-Yuan Du, 2007, Multisymplectic structures and discretizations for one-way wave equations, Lett.  Math.  Phys.  79, 213-220.
  35. Jing-Bo Chen, 2007, Multisymplectic geometry and its applications for the Schrodinger equation in quantum mechanics, Chin. Phys. Lett., 24, 370-373.
  36. Jing-Bo Chen, 2007, A multisymplectic pseudospectral method for seismic modeling, Appl. Math. Comp., 186, 1612-1616.
  37. Jing-Bo Chen, 2006, Symplectic and myltisymplectic Fourier pseudospctral methods for the Klein-Gordon equation, Lett.  Math.  Phys.,  75, 293-305.
  38. Jing-Bo Chen, 2006, A multisymplectic variational framework for the nonlinear elastic wave equation, Chin. Phys. Lett., 23, 320-323.
  39. Jing-Bo Chen, Han-Ying Guo and Ke Wu, 2006, Discrete variational calculus and Lee's discrete mechanics, Appl. Math. Comp., 177, 226-234.
  40. Jing-Bo Chen, 2005, A multisymplectic integrator for the periodic nonlinear Schrodinger equation, Appl. Math. Comp., 170, 1394-1417.
  41. Jing-Bo Chen, 2005, Variational formulation for the multisymplectic Hamiltonian systems, Lett.  Math.  Phys.,  71,  243-253.
  42. Jing-Bo Chen, 2005, Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the good Boussinesq equation, Appl. Math. Comp., 161,  55-67.
  43. Jing-Bo Chen, 2005, Euler-Lagrange forms and cohomology groups on jet boundls, Chin. Phys. Lett., 22, 1858-1861.
  44. Jing-Bo Chen, 2004,Multisymplectic geometry for the seismic wave equation, Commun. Theor. Phys., 41, 561-566.
  45. Jing-Bo Chen, 2004, Multisymplectic Hamiltonian formulation for a one-way seismic equation of high-order, Chin. Phys. Lett., 21, 37-39.
  46. Jing-Bo Chen, H.Y. Guo and K. Wu, 2003, Discrete mechanics and the finite element method, Arc. Appl. Mech., 73, 421-433.
  47. Jing-Bo Chen, 2003, Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov-Kuznetsov equation, Lett. Math. Phys., 63, 115-124.
  48. Jing-Bo Chen, H.Y. Guo and K. Wu, 2003, Total variation in Hamiltonian formalism and symplectic-energy integrators, J. Math. Phys., 44, 1688-1702.
  49. Jing-Bo Chen and Meng-Zhao Qin, 2003, Multisymplectic composition integrators of high-order, J. Comp. Math., 21, 647-656.
  50. Jing-Bo Chen, Hans Munthe-Kaas and Meng-Zhao Qin, 2002, Square-conservative schemes for a class of evolution equations using Lie-group methods, SIAM J.  Numer.  Anal.,  39, 2164-2178.
  51. Jing-Bo Chen, 2002, Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators, Lett.  Math.  Phys.,  61, 63-73.
  52. Jing-Bo Chen, 2002, Multisymplecticity of Crank-Nicolson scheme for the nonlinear Schr?dinger equation, J.  Phys.  Soc.  Jap.,  71, 2348-2349. 
  53. Jing-Bo Chen, Meng-Zhao Qin and Yi-Fa Tang, 2002, Symplectic and multisymplectic methods for the nonlinear Schr?dinger equation, Comput.  Math.  Appl., 43, 1095-1106. 
  54. Jing-Bo Chen and Meng-Zhao Qin, 2002, A multisymplectic variational integrator for the nonlinear Schr?dinger equation, Numer.  Meth.  Part.  Diff.  Eq.,  18, 523-536.
  55. Jing-Bo Chen and Meng-Zhao Qin, 2001, Multisymplectic Fourier pseudospectral method for the nonlinear Schrodinger equation,  Eelctr. Tran. Numer. Anal., 12, 193-204.
  56. Jing-Bo Chen, 2001, New schemes for the nonlinear Schr?dinger equation, Appl. Math. Comp., 124, 371-379.

已授权发明专利:

  1. 一种三维声波方程任意域多尺度全波形反演方法及装置,专利号:ZL201610921005.7,发明人:陈景波, 戴梦雪, 曹健。
  2. 三维Laplace域声波方程数值模拟方法及装置,专利号:ZL201610675022.7,发明人:陈景波,戴梦雪。
 

地址:北京市朝阳区北土城西路19号 邮 编:100029 电话:010-82998001 传真:010-62010846
版权所有© 2009 中国科学院地质与地球物理研究所 备案序号:京ICP备05029136号