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S U M M A R Y
By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full
waveform inversion (FWI) can recover a long-wavelength velocity model from the original
undamped seismic data lacking low-frequency information. Laplace-Fourier-domain mod-
elling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical
phase velocity and the numerical attenuation propagation velocity, a method for performing
Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method
is applied to an average-derivative optimal scheme. The results show that within the relative
error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires
seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and
unequal directional sampling intervals. In contrast, the classical five-point scheme requires
23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same
accuracy. Numerical experiments demonstrate the theoretical analysis.
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I N T RO D U C T I O N

Conventional frequency-domain full waveform inversion (FWI)
methods often fail to recover long-wavelength components of the
velocity model from seismic data lacking low-frequency informa-
tion. To address this issue, Laplace-domain FWI was proposed (Shin
& Cha 2008). Smoother objective function and insensitivity to the
lack of low-frequency information in Laplace domain leads to the
success of Laplace-domain FWI (Ha & Shin 2012). Combined with
conventional FWI, Lapace-domain FWI has been successfully ap-
plied to real data (Shin et al. 2010; Ha et al. 2012).

Shin & Cha (2009) further introduced Laplace-Fourier-domain
FWI which is equivalent to the complex-frequency-domain method
used by Brenders & Pratt (2007). Instead of using only the zero
frequency component of the damped wavefield in Laplace-domain
FWI, Laplace-Fourier-domain FWI uses the low-frequency com-
ponents of the damped wavefield. Moreover, using full-frequency
components of the damped wavefield leads to full Laplace-Fourier-
domain FWI (Shin et al. 2010). Forward modelling in Laplace–
Fourier domain is an important part of Laplace-Fourier-domain
FWI. In general, numerical modelling schemes for frequency-
domain modelling can be directly adapted to that for Laplace-
Fourier-domain modelling. For example, the average-derivative
optimal scheme in Chen (2012) can be directly employed to
perform Laplace-Fourier-domain modelling by simply replacing

the original frequency with the complex frequency. However,
the dispersion analysis of the Laplace-Fourier-domain schemes is
more complicated. Um et al. (2012) performed Laplace-Fourier-
domain dispersion analysis by numerical experiments. Here, I
will discuss theoretical dispersion analysis by the von Neumann
method.

For Fourier-domain (also known as frequency-domain) disper-
sion analysis, one uses the numerical phase velocity which de-
pends on the number of gridpoints per wavelength (Jo et al. 1996;
Chen 2012). For Laplace-domain dispersion analysis, one uses the
numerical attenuation propagation velocity which depends on the
number of gridpoints per pseudo-wavelength (Chen 2014). When
it comes to Laplace-Fourier-domain dispersion analysis, both the
numerical phase velocity and the numerical attenuation propaga-
tion velocity are involved. More significantly, the numerical phase
velocity depends on both the number of gridpoints per wavelength
and the number of gridpoints per pseudo-wavelength, and the same
is true for the numerical attenuation propagation velocity. This is
why the dispersion analysis of the Laplace-Fourier-domain schemes
becomes more complicated.

In the next section, I will present the Laplace-Fourier-domain
average-derivative optimal scheme. This is followed by the opti-
mization of coefficients and a numerical dispersion analysis. Nu-
merical examples are then presented to demonstrate the theoretical
analysis.
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1682 J.-B. Chen

A L A P L A C E - F O U R I E R - D O M A I N
S C H E M E

Consider the 2-D scalar-wave equation in the Laplace–Fourier
domain

∂2 P

∂x2
+ ∂2 P

∂z2
+ (ω + i s)2

v2
P = 0, (1)

where P is the pressure wavefield, ω is the angular frequency, s is
the Laplace damping constant, i = √−1 and v(x, z) is the velocity.
Here we assume constant density. Generalization to the variable
density case can be easily done (Chen 2012).

Numerical schemes for eq. (1) can be directly obtained from
the corresponding frequency-domain schemes. Frequency-domain
schemes include the classical five-point scheme (Pratt & Worthing-
ton 1990), the optimal nine-point scheme for equal directional
sampling intervals (Jo et al. 1996), the average-derivative optimal
scheme (Chen 2012) and the directional-derivative optimal scheme
(Chen 2013).

In this paper, I consider an average-derivative nine-point scheme
for eq. (1):

P̄m+1, n − 2P̄m, n + P̄m−1, n

�x2
+ P̃m, n+1 − 2P̃m, n + P̃m, n−1

�z2

+ (ω + i s)2

v2
m, n

(cPm, n + d(Pm+1, n + Pm−1, n + Pm, n+1 + Pm, n−1)

+ f (Pm+1, n+1 + Pm−1, n+1 + Pm+1, n−1 + Pm−1, n−1)) = 0, (2)

where

P̄m+1, n = 1 − α

2
Pm+1, n+1 + αPm+1, n + 1 − α

2
Pm+1, n−1,

P̄m, n = 1 − α

2
Pm, n+1 + αPm, n + 1 − α

2
Pm, n−1,

P̄m−1, n = 1 − α

2
Pm−1, n+1 + αPm−1, n + 1 − α

2
Pm−1, n−1,

and

P̃m, n+1 = 1 − β

2
Pm+1, n+1 + β Pm, n+1 + 1 − β

2
Pm−1, n+1,

P̃m, n = 1 − β

2
Pm+1, n + β Pm, n + 1 − β

2
Pm−1, n,

P̃m, n−1 = 1 − β

2
Pm+1, n−1 + β Pm, n−1 + 1 − β

2
Pm−1, n−1,

where Pm, n ≈ P(m�x, n�z); vn, m ≈ v(m�x, n�z); �x and �z are
directional sampling intervals; α, β, c and d are weighted coeffi-
cients which should be optimized; and f = 1−c−4d

4 .

The average-derivative nine-point scheme (2) includes the classi-
cal five-point scheme as a special case, because when α = 1, β = 1,
c = 1 and d = 0, the scheme (2) becomes

Pm+1, n − 2Pm, n + Pm−1, n

�x2
+ Pm, n+1 − 2Pm, n + Pm, n−1

�z2

+ (ω + i s)2

v2
m, n

Pm, n = 0. (3)

O P T I M I Z AT I O N A N D D I S P E R S I O N
A NA LY S I S

Consider an attenuating plane-wave function in the following form:

P(k, r) = P0ei kr , (4)

where r = sin(θ )x + cos(θ )z, k = kr + i ki , P0 is a constant and
θ is the propagation angle. Here kr = ω

v
is the wavenumber, and

ki = s
v

is the pseudo-wavenumber (Chen 2014).
Substituting eq. (4) into eq. (2) and assuming a constant v, one

obtains the discrete dispersion relation

(ω + i s)2

v2
= A

B�x2
, (5)

where

A =
[

(1 − α) cos

(
k�x

R
cos(θ )

)
+ α

]
[2 − 2 cos (k�x sin(θ ))]

+ R2 [(1 − β) cos (k�x sin(θ )) + β]

×
[

2 − 2 cos

(
k�x

R
cos(θ )

)]
,

B = c + 2d

[
cos

(
k�x

R
cos(θ )

)
+ cos (k�x sin(θ ))

]

+ 4 f cos

(
k�x

R
cos(θ )

)
cos (k�x sin(θ )) ,

where R = �x
�z .

One can express k�x as

k�x = kr�x + i ki�x = 2π

Gr
+ i

2π

Gi
, (6)

where Gr = 2π

kr �x is the number of gridpoints per wavelength, and

Gi = 2π

ki �x is the number of gridpoints per pseudo-wavelength. Here,
I first consider the case �x ≥ �z.

Set

F(Gr , Gi , θ ) = Fr (Gr , Gi , θ ) + iFi (Gr , Gi , θ ) =
√

A

B
. (7)

where Fr (Gr , Gi , θ ) and Fi (Gr , Gi , θ ) are the real and imaginary

parts of F(Gr , Gi , θ ), respectively. Here
√

A
B denotes the square

root of A
B whose angle ϕ satisfying − π

2 < ϕ ≤ π

2 .
From eqs (5) and (7), one can obtain

ω

v
= 1

�x
Fr (Gr , Gi , θ ), (8)

s

v
= 1

�x
Fi (Gr , Gi , θ ). (9)

From eqs (8) and (9), normalized numerical phase velocity and
numerical attenuation propagation velocity can be obtained as fol-
lows:

vr

v
= Gr

2π
Fr (Gr , Gi , θ ), (10)

vi

v
= Gi

2π
Fi (Gr , Gi , θ ), (11)

where vr = ω

kr
and vi = s

ki
. Note that vr

v
depends on both Gr and

Gi. The same is true for vi
v

.
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Laplace-Fourier-domain dispersion analysis 1683

Table 1. Optimization coefficients for α, β, c and d for different �x
�z when

�x ≥ �z.

α β c d

�x
�z = 1 0.833220 0.833234 0.666603 0.083349
�x
�z = 1.5 0.465714 0.996631 0.666632 0.083342
�x
�z = 2 0.171721 0.998697 0.666656 0.083336
�x
�z = 2.5 0.058736 0.957257 0.666673 0.083332
�x
�z = 3 0.059368 0.919334 0.666683 0.083329
�x
�z = 3.5 0.061366 0.896366 0.666692 0.083327
�x
�z = 4 0.063906 0.881444 0.666698 0.083326

When �x �= �z, the quantity Gi and Gr are defined with respect
to the larger sampling interval. That is why I separate the analysis
for �x ≥ �z and �z > �x.

The coefficients α, β, c and d are determined by minimizing the
velocity error:

E(α, β, c, d) =
∫∫∫ [ (

1 − vr (θ, k̃r , k̃i ; α, β, c, d)

v

)2

+
(

1 − vi (θ, k̃r , k̃i ; α, β, c, d)

v

)2
]

d k̃r d k̃i d θ,

(12)

where k̃r = 1
Gr

and k̃i = 1
Gi

.

The ranges of k̃r , k̃i and θ are taken as [0, 0.15], [0, 0.15] and
[0, π

2 ], respectively. I use a constrained non-linear optimization
program fmincon in Matlab to determine the optimization coeffi-
cients. The optimization coefficients for different R = �x

�z are listed
in Table 1. The coefficients are different from their counterparts
of Fourier-domain and Laplace-domain average-derivative optimal
schemes (Chen 2012, 2014). This is because numerical dispersion
analysis of Laplace–Fourier domain is fundamentally different from
that of Laplace domain or Fourier domain. For Laplace-Fourier-
domain analysis, both numerical attenuation propagation velocity
and numerical phase velocity are involved. To reach the required
accuracy, one must reduce the errors of these two velocities simul-
taneously. This leads to different optimization coefficients and more
gridpoints per wavelength. As long as s �= 0 and ω �= 0, the result of
Laplace-Fourier-domain dispersion analysis is independent of the
values of s and ω. The reason is that the dispersion analysis is based
on pseudo-wavelength and wavelength which cannot be determined
by the values of s and ω alone.

If �z > �x, one obtains the discrete dispersion relation

(ω + i s)2

v2
= A1

B1�x2
, (13)

where

A1 = R2 [(1 − α) cos (k�z cos(θ ))+α]

[
2−2 cos

(
k�z

R
sin(θ )

)]

+
[

(1−β) cos

(
k�z

R
sin(θ )

)
+β

]
[2 − 2 cos (k�z cos(θ ))] ,

B1 = c + 2d

[
cos (k�z cos(θ )) + cos

(
k�z

R
sin(θ )

)]

+ 4 f cos (k�z cos(θ )) cos

(
k�z

R
sin(θ )

)
,

where R = �z
�x .

Table 2. Optimization coefficients for α, β, c and d for different �z
�x when

�x < �z.

α β c d

�z
�x = 1.5 0.996631 0.465714 0.666632 0.083342
�z
�x = 2 0.998697 0.171721 0.666656 0.083336
�z
�x = 2.5 0.957257 0.058736 0.666673 0.083332
�z
�x = 3 0.919334 0.059368 0.666683 0.083329
�z
�x = 3.5 0.896366 0.061366 0.666692 0.083327
�x
�z = 4 0.881444 0.063906 0.666698 0.083326

One can express k�z as

k�z = kr�z + i ki�z = 2π

Gr
+ i

2π

Gi
, (14)

where Gr = 2π

kr �z is the number of gridpoints per wavelength, and

Gi = 2π

ki �z is the number of gridpoints per pseudo-wavelength.
The optimization coefficients for the case of �z > �x are listed

in Table 2. Compared to the case of �x ≥ �z, the only change is
that the coefficients α and β are exchanged. This is because only
the roles of x and z are exchanged in this case.

Now I perform numerical dispersion analysis. Fig. 1 shows nor-
malized numerical phase velocity curves vr

v
of the five-point scheme

(3) and the average-derivative optimal nine-point scheme (2) for dif-
ferent propagation angles when �x

�z = 1. In each plot, 1
Gr

varies, and
1

Gi
is fixed. For the five-point scheme (3), the normalized numer-

ical phase velocity errors increase with increasing 1
Gr

for small

fixed values of 1
Gi

, and for large fixed values of 1
Gi

, the normalized

numerical phase velocity errors decrease with increasing 1
Gr

. This
phenomenon indicates that the normalized numerical phase velocity
errors depend on both 1

Gr
and 1

Gi
. For the average-derivative opti-

mal nine-point scheme (2), the normalized numerical phase velocity
errors remain within 1 per cent. Fig. 2 shows normalized numer-
ical phase velocity surfaces vr

v
of the five-point scheme (3) and

the average-derivative optimal nine-point scheme (2) for different
propagation angles when �x

�z = 1. In each plot, both 1
Gr

and 1
Gi

vary.
These plots provide more complete delineation of the normalized
numerical phase velocity vr

v
. For the five-point scheme (3), large

errors occur whenever 1
Gr

or 1
Gi

is large. For the average-derivative
optimal nine-point scheme (2), the errors remain within 1 per cent
for the whole range of 1

Gr
and 1

Gi
.

Fig. 3 shows normalized numerical attenuation propagation ve-
locity curves vi

v
of the five-point scheme (3) and the average-

derivative optimal nine-point scheme (2) for different propagation
angles when �x

�z = 1. In each plot, 1
Gi

varies, and 1
Gr

is fixed. For the
five-point scheme (3), the normalized numerical attenuation prop-
agation velocity errors increase with increasing 1

Gi
for small fixed

values of 1
Gr

, and for large fixed values of 1
Gr

, the normalized numer-
ical attenuation propagation velocity errors decrease with increas-
ing 1

Gr
. However, unlike the case of normalized numerical phase

velocity errors, the normalized numerical attenuation propagation
velocity errors have the opposite sign. For the average-derivative
optimal nine-point scheme (2), the normalized numerical attenua-
tion propagation velocity errors remain within 1 per cent. Fig. 4
shows normalized numerical attenuation propagation velocity sur-
faces vi

v
of the five-point scheme (3) and the average-derivative op-

timal nine-point scheme (2) for different propagation angles when
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1684 J.-B. Chen

Figure 1. Normalized numerical phase velocity curves vr
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme (2) for different

propagation angles. In each plot, 1
Gr

varies and 1
Gi

is fixed. Here �x
�z = 1.

�x
�z = 1. In each plot, both 1

Gr
and 1

Gi
vary. Again, these plots provide

more complete delineation of the normalized numerical attenuation
propagation velocity vi

v
. For the five-point scheme (3), large errors

occur whenever 1
Gr

or 1
Gi

is large. For the average-derivative optimal

nine-point scheme (2), the errors remain within 1 per cent for the
whole range of 1

Gr
and 1

Gi
.

From Figs 1–4, one can draw a conclusion: within the error of
1 per cent, the five-point scheme (3) requires 23 gridpoints per

 at T
he L

ibrary of C
hinese A

cadem
y of Sciences on Septem

ber 1, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Laplace-Fourier-domain dispersion analysis 1685

Figure 2. Normalized numerical phase velocity surfaces vr
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme (2) for different

propagation angles. In each plot, both 1
Gr

and 1
Gi

vary. Here �x
�z = 1.

shortest wavelength and shortest pseudo-wavelength. In contrast,
the average-derivative optimal nine-point scheme (2) requires seven
gridpoints per shortest wavelength and shortest pseudo-wavelength.
Figs 5–8 show the corresponding results for the case of �x

�z = 2. In
this case, the same conclusion can be drawn with respect to the
number of gridpoints per shortest wavelength and shortest pseudo-
wavelength.

N U M E R I C A L E X A M P L E S

In this section, I present numerical examples to verify the theoretical
analysis on the average-derivative optimal nine-point scheme (2)
and the classical five-point scheme (3).

Consider a homogeneous velocity model with a velocity of
2100 m s−1. Horizontal and vertical distances are both 6 km (Fig. 9).
The angular frequency ω and the Laplace damping constant s are
both taken to be 10 π s−1. Accordingly, the wavelength and the
pseudo-wavelength are both 2100/(10π/2π ) m = 420 m. Accord-
ing to the criterion of seven gridpoints per smallest wavelength
and smallest pseudo-wavelength, horizontal sampling interval is
determined by �x = 420/7 m = 60 m. Vertical sampling interval
is taken as �z = �x = 60 m. For this ratio of directional sam-
pling intervals, the optimization coefficients of the scheme (2) are
α = 0.833220, β = 0.833234, c = 0.666603 and d = 0.083349
(Table 1). Horizontal and vertical samplings are nx = 101 and
nz = 101, respectively. A Ricker wavelet is placed at the centre of

 at T
he L

ibrary of C
hinese A

cadem
y of Sciences on Septem

ber 1, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1686 J.-B. Chen

Figure 3. Normalized numerical attenuation propagation velocity curves vi
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme

(2) for different propagation angles. In each plot, 1
Gi

varies and 1
Gr

is fixed. Here �x
�z = 1.

the model as a source, and a receiver array is placed at a depth
of 1.5 km.

For the analytical solution, the following formula is used (Alford
et al. 1974):

P(x, z, ω, s) = iπ H (2)
0

(
ω − is

v
r

)
F(ω, s), (15)

where i is the imaginary unit, H (2)
0 is the second Hankel function of

order zero, F(ω, s) is the Laplace–Fourier transform of the Ricker

wavelet and r = √
(x − x0)2 + (z − z0)2. Here (x0, z0) is the source

position.
Fig. 10 shows the Laplace-Fourier-domain seismograms (real

part) computed with the analytical formula (15), the classical five-
point scheme (3) and the average-derivative optimal nine-point
scheme (2). The simulation result with the average-derivative opti-
mal nine-point scheme (2) is in good agreement with the analytical
result. The result with the classical five-point scheme (3) exhibits
large errors due to numerical dispersion. To further demonstrate the
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Laplace-Fourier-domain dispersion analysis 1687

Figure 4. Normalized numerical attenuation propagation velocity surfaces vi
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme

(2) for different propagation angles. In each plot, both 1
Gi

and 1
Gr

vary. Here �x
�z = 1.

result of dispersion analysis, Fig. 11 displays the Laplace-Fourier-
domain seismograms computed with the analytical formula (15), the
average-derivative optimal nine-point scheme (3) with seven grid-
points per wavelength and pseudo-wavelength, and the average-
derivative optimal nine-point scheme (3) with five gridpoints per
wavelength and pseudo-wavelength. One can see that the result
obtained with the average-derivative optimal nine-point scheme (3)
with five gridpoints per wavelength and pseudo-wavelength exhibits
errors due to fewer gridpoints than that required by the theoretical
dispersion analysis.

Now consider another case where �x �= �z. Let �z = �x/2.
Accordingly, vertical samplings become nz = 201. For this ra-

tio of directional sampling intervals, the optimization coeffi-
cients of the scheme (2) are α = 0.171721, β = 0.998697,
c = 0.666656 and d = 0.083336 (Table 1). Fig. 12 shows the
Laplace-Fourier-domain seismograms computed with the analyt-
ical formula (15), the classical five-point scheme (3) and the
average-derivative optimal nine-point scheme (2). The simulation
result with the average-derivative optimal nine-point scheme (2)
is again in good agreement with the analytical result. The result
with the classical five-point scheme (3) exhibits errors due to nu-
merical dispersion. Compared to the case where �x = �z, the
errors are reduced due to the smaller �z. These results are in
line with the theoretical analysis on numerical dispersion of the
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1688 J.-B. Chen

Figure 5. Normalized numerical phase velocity curves vr
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme (2) for different

propagation angles. In each plot, 1
Gr

varies and 1
Gi

is fixed. Here �x
�z = 2.

average-derivative optimal nine-point scheme (2) and the classical
five-point scheme (3).

Finally, I consider a more realistic model. Fig. 13(a) shows a
salt model which is a 2-D section of the SEG/EAGE salt model.

The sampling intervals are �x = 40 m and �z = 20 m. Horizontal
and vertical samplings are nx = 251 and nz = 201, respectively. A
Ricker wavelet is placed at (x = 5 km, z = 2 km) as a source, and
the receivers are set at the depth of 20 m with a spacing of 40 m.
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Laplace-Fourier-domain dispersion analysis 1689

Figure 6. Normalized numerical phase velocity surfaces vr
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme (2) for different

propagation angles. In each plot, both 1
Gr

and 1
Gi

vary. Here �x
�z = 2.

Again, the angular frequency ω and the Laplace damping constant s
are both taken to be 10 π s−1. Fig. 13(b) shows the Laplace-Fourier-
domain seismograms computed with the classical five-point scheme
(3) and the average-derivative optimal nine-point scheme (2). Since
the analytical result is not available in this case, I also show the
result computed by the classical five-point scheme (3) with smaller
�x and �z for comparison. One can see that the result of the
classical five-point scheme (3) with smaller spacings is closer to the
result of the average-derivative optimal nine-point scheme (2). This
demonstrates the greater accuracy of the average-derivative optimal
nine-point scheme (2) for this salt model.

C O N C LU S I O N S

Based on the numerical phase velocity and the numerical at-
tenuation propagation velocity, a Laplace-Fourier-domain method
of numerical dispersion analysis is developed and applied to an
average-derivative optimal nine-point scheme in Laplace–Fourier
domain. The resulting optimization coefficients are different from
their frequency-domain and Laplace-domain counterparts. Com-
pared to the classical five-point scheme, this Laplace-Fourier-
domain average-derivative optimal nine-point scheme reduces
the number of gridpoints per shortest wavelength and shortest
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1690 J.-B. Chen

Figure 7. Normalized numerical attenuation propagation velocity curves vi
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme

(2) for different propagation angles. In each plot, 1
Gi

varies and 1
Gr

is fixed. Here �x
�z = 2.

pseudo-wavelength from 23 to 7 for both equal and unequal
directional sampling intervals. Comparisons with the analytical
solution for a homogenous model demonstrate the theoretical
analysis.
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Laplace-Fourier-domain dispersion analysis 1691

Figure 8. Normalized numerical attenuation propagation velocity surfaces vi
v

of the five-point scheme (3) and the average-derivative optimal nine-point scheme

(2) for different propagation angles. In each plot, both 1
Gi

and 1
Gr

vary. Here �x
�z = 2.

Figure 9. Schematic of the homogeneous model.

Figure 10. Laplace-Fourier-domain seismograms computed with the ana-
lytical formula (15), the classical five-point scheme (3) and the average-
derivative optimal nine-point scheme (2). Here �x

�z = 1.
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Figure 11. Laplace-Fourier-domain seismograms computed with the an-
alytical formula (15), the average-derivative optimal nine-point scheme
(3) with seven gridpoints per wavelength and pseudo-wavelength, and the
average-derivative optimal nine-point scheme (3) with five gridpoints per
wavelength and pseudo-wavelength. Here �x

�z = 1.

Figure 12. Laplace-Fourier-domain seismograms computed with the ana-
lytical formula (15), the classical five-point scheme (3) and the average-
derivative optimal nine-point scheme (2). Here �x

�z = 2.

Natural Science Foundation of China under grant nos. 41274139
and 40974074.
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