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Kimberlite, a deep-sourced ultramafic potassic rock, carries not only diamond, but also invaluable mantle
xenoliths and/orxenocrysts,which are important for tracking the evolutionof subcontinental lithosphericmantle
(SCLM). However, it is challenging to accurately determine the emplacement age of kimberlite and its
compositions of primary magma because of modifications by crustal and/or mantle contamination and post-
emplacement alteration. This paper reports emplacement ages of diamondiferous kimberlites in Mengyin and
Fuxian of the North China Craton (NCC) using three different dating methods. For Mengyin kimberlite, single-
grain phlogopite Rb–Sr dating yields an isochron age of 485±4Ma, U–Th–Pb analyses on perovskite give
a 238U–206Pb age of 480.6±2.9 Ma and a 232Th–208Pb age of 478.9±3.9 Ma, and baddeleyite yields a 207Pb–206Pb
age of 480.4±3.9 Ma. For Fuxian kimberlite, baddeleyite gives a 207Pb–206Pb age of 479.6±3.9 Ma, indicating
that the Paleozoic kimberlites in the NCC were emplaced at ~480 Ma. Numerous lines of evidence indicate that
the studied baddeleyites are xenocrysts from the SCLM, and can beused to constrainHf isotope compositions (εHf
(t)~−6) of the SCLM when kimberlite erupted. Combined with data from Mesozoic–Cenozoic mantle-derived
rocks and xenoliths, the Hf isotope evolution trend of the SCLM beneath NCC before craton destruction was
tentatively constructed, which suggested that the Archean SLCM was enriched by metasomatism at ~1.3 Ga.
Further Hf isotope investigations on additional SCLM-derived materials could be used to compare with the
constructed Hf isotope evolution trend before craton destruction to determine when lithospheric thinning
occurred.
+86 10 62010846.
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1. Introduction

The North China Craton (NCC) (Fig. 1) is one of the world's oldest
Archean blocks as manifested by crustal remnants as old as 3800 Ma
(Liu et al., 1992; Song et al., 1996;Wu et al., 2008a; Zheng et al., 2004a).
The existence of Ordovician diamondiferous kimberlites in the NCC
indicates a thick (~200 km) lithosphere in the early Paleozoic. However,
at present the lithosphere is b80 km thick as revealed by seismic studies
and petrologic studies ofmantle xenoliths inMesozoic–Cenozoic “intra-
plate” volcanism, suggesting that a significant part of the original
lithospheric mantle beneath the eastern NCC was removed during the
Phanerozoic (e.g. Fan and Menzies, 1992; Gao et al., 2002; Griffin et al.,
1998; Menzies et al., 1993, 2007; Menzies and Xu, 1998; Xu, 2001;
Zheng et al., 1998, 2007). The thick, old, cold and refractory
subcontinental lithospheric mantle (SCLM) beneath the NCC was
subsequently replaced by thin, young, hot and fertile mantle (e.g. Gao
et al., 2002; Griffin et al., 1998; Huang et al., 2007; Menzies and Xu,
1998;Menzies et al., 2007;Wuet al., 2003, 2006a;Xu, 2001; Zhanget al.,
2008; Zheng et al., 1998).
Although extensive investigations have been conducted on the
lithospheric thinning process, there are still considerable debate on its
mechanism, with lithospheric delamination (e.g. Deng et al., 2007; Gao
et al., 2002, 2004, 2008;Wu et al., 2003, 2005a) and thermo-mechanical
erosion (e.g.Griffin et al., 1998;Menzies and Xu, 1998; Xu, 2001; Zhang,
2005; Zhang et al., 2008) being commonly proposed. The delamination
model, (amore rapid process), proposes that the thinningwas triggered
by foundering and sinking of heavy material, and predicts that the
present SCLM is juvenile. In contrast, the erosion model emphasizes a
slow chemical process of asthenospheric upwelling, forming a stratified
SCLM with Archean relict overlying newly accreted material (Griffin
et al., 1998; Menzies and Xu, 1998).

Understanding SCLM evolution is helpful in deciphering the
lithospheric thinning mechanisms. For this reason, extensive studies
have been conducted on mantle xenoliths and SCLM-derived mafic-
alkaline rocks in theNCC (e.g., Chu et al., 2009; Gao et al., 2002;Wu et al.,
2003, 2006a; Xu et al., 2008; Zhang et al., 2008; Zheng et al., 2009).
However, our knowledge about the Paleozoic SCLM beneath the NCC is
rather limited. Firstly, the age of the diamondiferousMengyin (Shandong
province) and Fuxian (Liaoning Province) kimberlites, erupted on
opposite sides of the translithospheric Tanlu fault (Fig. 1), is not well
determined. Available geochronological data yield a wide range from
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Fig. 1. Geological sketch map showing the Cratons in China and sample localities discussed in the text. Diamond: kimberlite. Circle: nepheline syenite.
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456 Ma to 475 Ma based on phlogopite Rb–Sr and Ar–Ar, perovskite
U–Pb by TIMS and LA-ICPMSmethods (Dobbs et al., 1994; Li et al., 2005;
Yang et al., 2009; Zhang and Yang, 2007). Secondly, although it has been
proposed that the Paleozoic SCLM was Sr–Nd isotopically enriched,
significantly different from that of depleted SCLM in the Cenozoic (Chi
and Lu, 1996; Fan and Menzies, 1992; Griffin et al., 1998; Huang et al.,
2007; Menzies and Xu, 1998; Zheng et al., 1998), this conclusion was
based on the limited data from significantly altered peridotite samples.
The Os isotope character of these altered samples is likely to be less
disturbed and so anArcheanmelt-extraction age can be established (Chu
et al., 2009; Gao et al., 2002;Wu et al., 2006a; Zhang et al., 2008; Rudnick
et al., 2004), however other isotopic features like Sr–Nd–Hf systems of
the SCLM are still in doubt or remain unknown (Wu et al., 2008b).

In this paper, we report a series of comprehensive dating results of
phlogopite Rb–Sr, perovskite 238U–206Pb and 232Th–208Pb and badde-
leyite 207Pb–206Pb analyses obtained from the Mengyin and Fuxian
kimberlites. The baddeleyites, considered to bemantle xenocrysts,were
used to trace the Hf isotope composition of the Paleozoic SCLM.

2. Geological settings and samples

TheNCC is the oldest tectonic unit in China, with crustal components
up to ca. 3.8 Ga exposed in the far north-east (e.g., Liu et al., 1992;Wu et
al., 2008a). The Early Paleozoic QilianshanOrogen and the Late Paleozoic
Central Asian Orogenic Belt bound the craton to thewest and the north,
respectively, and in the south theQinling-Dabie-Sulu ultrahigh-pressure
metamorphic belt separates it from the South China Craton (Fig. 1).
Based on age, lithological assemblage, tectonic evolution and P–T–t
paths, the NCC has been divided into Eastern andWestern blocks, which
were amalgamated along the Paleoproterozoic Trans-North China
Orogen (Zhao et al., 2005 and references therein). Based on today's
seismology and geography, the NCC can be separated into two different
tectonic domains by the N–S trending Daxinganling–Taihangshan
gravity lineament (DTGL) (Ma, 1989; Menzies and Xu, 1998).

Similar to other Archean blocks around the world, the NCC contains
both greenstone belts and high-grade metamorphic terrains, which
were metamorphosed at 2.5 Ga and subsequently cratonized at 1.8 Ga
by collision of the Eastern and Western blocks (e.g., Wu et al., 2005a;
Zhao et al., 2005). After 1.8 Ga, the NCC has remained relatively stable
and was covered by a thick sequence of Mesoproterozoic to Paleozoic
sediments. In the Paleozoic, when the diamondiferous Mengyin and
Fuxian kimberliteswere emplaced in Shandong and Liaoning provinces,
respectively (Zhanget al., 1989), and theNCCwas characterizedby thick
carbonate sedimentation during the Cambrian to Early Ordovician. In
the Mesozoic, extensive volcanic activity and granitoid emplacement
occurred in the eastern NCC, possibly due to the interaction of the
Eurasian and Pacific plates and resulting from the lithospheric thinning
(Wu et al., 2003, 2005b). During the Cenozoic, numerous alkaline
basalts containingmantle peridotite andminor lower-crustal granulites
xenoliths were erupted throughout the central and eastern parts of the
craton.

In this study, kimberlites from Mengyin and Fuxian were investi-
gated. The Mengyin kimberlites are diamondiferous and erupted
through the Archean Taishan Complex. About 100 kimberlitic dykes
and pipes have been identified (Fig. 1, Chi and Lu, 1996; Wan, 1989).
Among them, the pipe 1 (Shengli 1, N35°40′ and E117°47′) is the most
important diamondiferous one in the area and was targeted for this
study. Perovskite is relatively abundant in the Mengyin kimberlite
groundmass, with concentrations up to 5% (rarely up to 20%, Yang et al.,
2009). Most perovskite grains are dark orange to brown and euhedral
shapes with grain sizes ranging from 30 to 200 μm. Phlogopite and
perovskite were separated from sample MY12, the only one containing
baddeleyite, for further investigation. The Fuxian diamondiferous
kimberlites are emplaced in the Mesoproterozoic–Cambrian country
rocks (Fig. 1). Samples here show more extensive alteration and
weathering. Although a number of kimberlite samples were used to
separate perovskite and baddeleyite, perovskite is extremely rare and
baddeleyite was obtained from only one rock sample. In both localities,
these kimberlites contain a variety of crustal fragments, including
limestone, gneiss, amphibolite, mafic granulite xenoliths (Chi and Lu,
1996; Dong, 1994; Wan, 1989; Zheng et al., 2004a,b) and exotic zircons
with ages of 2.5 Ga (Yin et al., 2005; Zheng et al., 2009).

3. Analytical procedures

The kimberlite samples were crushed using a jaw crusher and bico
disk mill equipped with hardened steel plates. Minerals were
concentrated using a wilfley Table, heavy liquids and a Frantz
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Isodynamic separator. Clean and freshmineral grainswere hand-picked
under a binocular microscope. Minerals fractions including phlogopite,
baddeleyite and perovskite were separated from sample MY12 of the
Mengyin kimberlite, and baddeleyite from sample FX-1 of the Fuxian
kimberlite. Phlogopite grains were selected for single-grain Rb–Sr
dating, and perovskites were analyzed for U–Pb dating, whereas
baddeleyites were selected for U–Pb or Pb–Pb dating and Hf isotope
analyses. All analyses were performed at the Institute of Geology and
Geophysics, Chinese Academy of Sciences (IGGCAS) and are detailed in
Electronic Appendix file.

4. Analytical results

4.1. Phlogopite Rb–Sr age

Single-grain phlogopite Rb–Sr isotopic data for the MY12 kimberlite
sample after blank and spike corrections are shown in Fig. 2 and
Appendix Table 1. Regression and age calculation of isochron were
performed using the Isoplot software (Ludwig, 2003). The decay
constant of 87Rb is 1.42×10−11 as recommended by Steiger and Jäger
(1977), giving1.5% for errors of 87Rb/86Sr ratios and0.01% for errors of
87Sr/86Sr ratios. Rb and Sr contents were calculated using estimated
weight of the analyzed grains (ca. 0.1 mg per grain). Eight individual
grainsof phlogopite give 87Rb/86Sr ranging from18.6 to 450andyield an
isochron age of 485±4 Ma with an initial 87Sr/86Sr of 0.7138±0.0029
(MSWD=0.5, Fig. 2a).

For a comparison, Rb–Sr isochronof the Fuxianphlogopitemeasured
in Li et al. (2005) is also shownhere (Fig. 2b). Eleven analyses yielded an
Fig. 2. Single-grain phlogopite Rb–Sr isochrons of the Mengyin kimberlite (a) and
Fuxian kimberlite (b).
age of 463±7 Ma with an initial 87Sr/86Sr of 0.7225±0.0057. This age
is ~20 Ma younger than that obtained for the Mengyin phlogopite. The
Fuxianphlogopites have higher initial Sr isotopic ratio than theMengyin
samples.

4.2. Perovskite U–Th–Pb ages

MY12perovskites are euhedral and freshwithgrain sizes ranging from
30 to 100 μm(Yang et al., 2009). FifteenU–Pb analyseswere performed in
separated two sessions. The data are plotted in Fig. 3 (Appendix Table 2).
All the 30 analyses show that MY12 perovskites are fairly homogeneous
with a uranium content of 72±7 ppm (1 SD). Common lead ranges from
5 to 11 ppm, and the 204Pb-based ƒ206 value (percentage of common lead
206Pb in total 206Pb) ranges from 22% to 26%. Thorium content varies
significantly,with Th/U ranging from22 to 106. Due to the tight clustering
of data points, a Tera–Wasserburg plot gave an imprecise lower intercept
age at 501±55Ma, and an imprecise upper intercept of common
207Pb/206Pb composition at 0.94±0.19 as well. However, if the terrestrial
Pb model of Stacey and Kramers (1975) is applied as an estimate of
common lead composition, aConcordiaU–Pbageof480.6±2.9 Macanbe
obtained (Fig. 3). Aweightedaverage 206Pb/238Uagederivedby the 204Pb-
based common-Pb correction is 480.9±2.8 Ma (MSWD=1.0), identical
to the average 206Pb/238U age of 480.9±2.5 Ma (MSWD=1.1) given by
the 207Pb-based common-Pb correction. The rather high Th contents
result in low 204Pb-based ƒ208 values (percentage of common lead 208Pb in
total 208Pb) ranging from 2.3% to 6.8%. Aweighted average of 208Pb/232Th
ages is 478.9±3.9 Ma (MSWD=0.49, Fig. 3, inserted). The agreement
between the 238U–206Pb and 232Th–208Pb ages indicates a closedU–Th–Pb
system in this perovskite (Li et al., 2010b).

4.3. Baddeleyite U–Pb and Pb/Pb ages

Baddeleyite grains fromMY12 kimberlite are subhedral or fragmen-
tal with 10–100 μm in length (Fig. 4a). Nineteen Pb/Pb analytical data
withmulti-collector mode are listed in Appendix Table 3 and plotted in
Fig. 4b. Uranium contents range from 84 to 467 ppm. Their measured
radiogenic 207Pb/206Pb are indistinguishable within analytical errors,
with a weighted mean of 0.05671±0.00010, corresponding to a Pb/Pb
age of 480.4±3.9 Ma (MSWD=0.91, Fig. 4b).

Like the Mengyin kimberlite, baddeleyite grains from Fuxian
kimberlite (sample FX-1) are also subhedral and fragmental, and are
10–100 μm in length (Fig. 4c). Twenty five U–Pb analyses were
conducted under mono-collector mode and the data are reported in
Appendix Table 4, and the obtained Pb/Pb age is shown in Fig. 4d. It is
noted that the FX-1 baddeleyites contain high and variable U content
from 628 to 2958 ppm, and many grains show extremely high Th
contents (up to 1328 ppm) with Th/U up to 0.45. The calculated U–Pb
ages are variable between 443 and 550 Ma and broadly positively
correlate with U, Th contents and Th/U, which could be attributed to
crystal orientation effect (Wingate and Compston, 2000) and/or high U
effect (Li et al., 2010a; Williams and Hergt, 2000). However,
radiogenic 207Pb/206Pb of 25 measurements are consistent, within
analytical errors, with a weighted average of 0.05669±0.00013,
corresponding to a Pb/Pb age of 479.6±4.9 Ma (MSWD=0.71,
Fig. 4d).

4.4. Baddeleyite Hf isotope compositions

The Hf analyses were obtained using the same mounts which were
previously used for U–Pb and Pb–Pb dating. The results are shown in
Fig. 5 and Appendix Table 5. All baddeleyites have very low 176Lu/177Hf
(0.000005–0.000033). However, the small grain size, mostly b30 μm in
width, and needle- to wafer-shaped morphology make the laser-
ablation measurements quite difficult. Many grains were ejected after
short bombardment of laser, which resulted in big errors. Nevertheless,
twenty-eight analyses on MY12 baddeleyite were obtained with
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internal uncertainty ranging from 0.000031 to 0.000079 at 2σm level.
Though all measured 176Hf/177Hf ratios show a Gaussian distribution
pattern (Fig. 5a), those data with internal uncertainty larger than
0.00005 were excluded to calculate the average. A weighted average
of 176Hf/177Hf is 0.282286±0.000020 (2σm, n=12, MSWD=2.5),
corresponding to εHf (t=480 Ma) value of−6.62±0.64 (Fig. 5a).

Nineteen measurements on FX-1 baddeleyite show variations
of 176Hf/177Hf ranging from 0.282283 to 0.282389 with internal
uncertainties from 0.000014 to 0.000035 at 2σm level. Similarly, the
Hf isotopic data show a single population, and have a weighted average
value of 0.282308±0.000010 (2σm, n=18/19, MSWD=1.6), corre-
sponding to εHf (t=480 Ma) value of −5.86±0.36 (Fig. 5b).

5. Discussion

5.1. Emplacement age of kimberlites

Kimberlites and related rocks are a series of volatile-rich potassic
ultramafic rocks that originate from the deep lithospheric or sub-
lithospheric mantle (Mitchell, 1986, 1995; Woolley et al., 1996). They
generally contain abundant crustal andmantle xenoliths and are highly
susceptible to alteration and weathering. Therefore, the combined
effects of contamination and post-emplacement alteration make it
difficult not only for determining the compositions of the primary
kimberlite magmas, but also the age of their emplacement (Heaman,
1989; Li et al., 2010b; Mitchell, 1986).

There have been several attempts to date the emplacement age of
the Mengyin kimberlite. A Rb–Sr isotopic analysis of phlogopite yielded
an isochron age of 475±3 Ma (Dobbs et al., 1994), broadly consistent
with our single-grain phlogopite Rb–Sr result of 485±4 Ma in this
study. However, the initial 87Sr/86Sr (ISr) of the analyzed phlogopites lie
between0.704 and0.714 (Dobbs et al., 1994; this study), variablyhigher
than that of perovskite (0.7037 from Yang et al., 2009), suggesting a
significant crustal contamination and/or later alteration. In addition to
the Rb–Sr technique, Ar–Ar analyses of phlogopite were also used to
date kimberlite, which yielded an age of 465±3 Ma for the Mengyin
kimberlite (Zhang and Yang, 2007), ~15 Ma younger than the result of
the Rb–Sr isochron. The Ar–Ar age spectrum, however, indicates
mixture of different mineral phases and/or partial Ar loss (Zhang and
Yang, 2007).

Perovskite is considered as a good mineral for dating kimberlite
because it has high U content, occurs mainly in the kimberlite
groundmass and is considered to have crystallized during the early
stages of the magmatic history (e.g. Batumike et al., 2008; Kinny et al.,
1997; Kramers and Smith, 1983; Yang et al., 2009). Unfortunately, some
Fig. 3. U–Th–Pb dating results for the Mengyin perovskite.
perovskites in the Mengyin kimberlite suffered different levels of
alteration, and hence variable radiogenic Pb loss (Yang et al., 2009). It is
also noteworthy that perovskite usually contains a high proportion of
common lead,whichmakes it difficult to judge the concordance of U–Pb
system. In this case, only an apparent 206Pb/238U age can be obtained.
Previous 238U–206Pb perovskite ages of 456±8 Ma obtained by TIMS
(Dobbs et al., 1994) and 470±4 Ma by LA-ICPMS (Yang et al., 2009) can
also be attributed to the alteration. In ourwork, perovskitewas analyzed
by ion probe which consumed only a small volume of sample on the
least alterated part (judged by BSE images) of the mineral interior. Our
consistent 238U–206Pb and 232Th–208Pb ages demonstrate that the dated
Mengyin perovskites should be concordant in U–Th–Pb system (Li et al.,
2010b). Therefore, perovskites U–Th–Pb age of 480±4 Ma is suggested
as the best estimate of the emplacement age of theMengyin kimberlite.
Baddeleyites from the Mengyin kimberlite yielded a Pb–Pb age of
480.4±3.9 Ma, which is in good agreement with perovskite U–Th–Pb
ages. As discussed below, the studiedbaddeleyitemaybe inherited from
themantle source, but its U–Pb analyses can provide age estimation for
kimberlite as some kimberlitic zircons (Belousova et al., 2001; Davis
et al., 1976; Kinny et al., 1989).

As for the Fuxiankimberlite,while thephlogopiteAr–Ar plateaudate
of 464±2 Ma (Zhang and Yang, 2007) is consistent with previously
reported Rb–Sr isochron dates of ~463 Ma (Dobbs et al., 1994; Li et al.,
2005), mixture of different mineral phases and/or partial Ar loss was
noticed (Zhang and Yang, 2007). In addition, the initial 87Sr/86Sr values
(ISr) of 0.722 from phlogopite Rb–Sr isochron regression (Fig. 2b) is
much higher than those of the mantle-derived magmas, indicating
significant crustal contamination and/or later alteration. Therefore, both
the Rb–Sr and Ar–Ar ages are likely to be questionable. Unfortunately,
despite repeated attempts separation of perovskite from the Fuxian
kimberlite was unsuccessful. However, baddeleyite from one sample
yielded a Pb/Pb age of 479.6±3.9 Ma. Based on the concordance of the
perovskite U–Th–Pb age and the baddeleyite Pb/Pb age from the
Mengyin kimberlite, this baddeleyite Pb/Pb age is interpreted as the age
of emplacement of the Fuxian kimberlite.

Comparison with the aforementioned different isotopic systems
suggests that phlogopite is not an idealmineral for dating the kimberlite
by Rb–Sr and Ar–Ar methods because of its complicated alteration and/
or contamination processes. Although dating baddeleyite can yield the
precise crystallization ageof a kimberlite, it is rarely found inkimberlites
and could be xenocrystic in origin (see discussion below). Perovskite in
the kimberlite groundmass is therefore thought to be the best candidate
to date kimberlite, particularly using the ion probe technique that can
effectively avoid alteration in some crystals (Yang et al., 2009). More
importantly, simultaneous measurement of the perovskite U–Pb and
Th–Pb age makes it possible to determine the concordance of U–Th–Pb
system of the mineral, thus providing a robust constraint on the
emplacement age of kimberlite (Li et al., 2010b).

5.2. Xenocrystic origin of kimberlitic baddeleyite

Baddeleyite rarely occurs in kimberlite (Mitchell, 1986). Twodistinct
types of baddeleyite can be recognized from this kind of rocks (Heaman
and LeCheminant, 1993 and reference therein). The first baddeleyite
type occurs as a rim on zircon megacrysts or sometimes interfaces
between zircon and rutile/ilmenite, which is interpreted as products
formed by reaction between macrocrystal zircon and kimberlite melt
undersaturated in SiO2 and enriched in carbonate component. In fact,
this type of baddeleyite forms fine idiomorphic crystals which are
mostly oriented perpendicular to contours of zircon grains and they are
often parallel to each other. Crystals show a zoned structure, but
commonly have dark central parts and light marginal parts in back-
scattered electron images, indicating a higher U content in rim than core
(Heaman and LeCheminant, 1993). The second type of baddeleyite
occurs as xenocrysts, as documented in Mbuji–Mayi kimberlite and ˆIle
Bizard alnöite (Heamanand LeCheminant, 2000; Schärer et al., 1997). In
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this case, the baddeleyite was originally formed in the mantle and then
picked up by the deep-sourced magma. No matter how these
baddeleyites formed, this mineral has been proven to record the
emplacement age of magmas as its U–Pb isotopic clock was triggered
while being caught by the mantle-derived magmas (Heaman and
LeCheminant, 1993, 2000; Schärer et al., 1997).

Several lines of evidence support the xenocrystic origin for
baddeleyites from the Mengyin and Fuxian kimberlites. Firstly,
baddeleyite is very rare and can only be obtained occasionally. It is
much easier to obtain crustal zircon xenocrysts than baddeleyites. We
have not found any evidence showing reactions between xenocrystic
zircon and kimberlite melt. Secondly, the CL images of theMengyin and
Fuxian baddeleyites show zoning, but commonly suggesting higher U
content in core than rim, contrary to what formed by reaction between
macrocrystic zircon and kimberlite melt (Heaman and LeCheminant,
1993). No zircon exists as residue in the core. Thirdly, the studied
baddeleyite grains, although fragmental, have a grain size of N50 μm
(Fig. 4), much bigger than the crystallized baddeleyite from kimberlitic
magma (Mitchell, 1986). Fourthly, the εHf (480 Ma) value of ca. –6 for
baddeleyites is different from not only that of the kimberlite magma
(−0.3 to −6, Zhang and Yang, 2007), but also the xenocrystic zircons
(ca.−40, Zheng et al., 2009). This clearly indicates that baddeleyites did
not crystallize from the kimberlitic magma or were assimilated from
crustal rocks.

In summary, the baddeleyites from the Mengyin and Fuxian
kimberlites are most likely xenocrysts from the SCLM. These crystals
formed either directly from a melt by metasomatism, or through
subsolidus crystallization (Schärer et al., 1997) and stayed in the
lithospheric mantle at high temperature with U–Pb isotopic system
Fig. 4. CL images and Pb/Pb ages of baddeleyite xenocryst
remaining open. After eruption, its U–Pb systems were closed due to
cooling and crystallization of kimberlitic magma. Therefore, these
xenocrystic baddeleyites record the emplacement age of kimberlite.

As for Hf isotope composition, with the exception of those
measurements with large uncertainties, baddeleyites from Mengyin
and Fuxian kimberlites show a narrow range of ±2 εHf units, which is
close to the external precision of the analytical method (Wu et al.,
2006b). This narrow range of εHf values might be consistent with
crystallization from a single magma that was in equilibriumwith the Hf
composition of the SCLM (Griffin et al., 2000). Their Hfmodel age points
to ~1.3 Ga, whichmay record a metasomatism event manifested by the
widespread ~1.35 Ga diabase intrusion event in the NCC (Zhang et al.,
2009).

5.3. Evolution of the SCLM of NCC

Based on Os isotope characteristics and high Fo number of olivine in
peridotite xenoliths from Mengyin and Fuxian kimberlite, it is believed
that the lithosphericmantle keel of NCChad anArcheanmelt-extraction
age (e.g., Chu et al., 2009; Gao et al., 2002;Wu et al., 2003, 2006a; Zhang
et al., 2008; Zheng et al., 2006). In contrast, geophysical observations
and geochemical characteristics of peridotite xenoliths transported by
Cenozoic basalts indicate the current SCLM beneath the eastern NCC is
thin, hot and fertile (e.g. Griffin et al., 1998; Zheng et al., 2006). This
contrast suggests that ~100 km of cratonic lithosphere had been
removed between early Ordovician and Cenozoic, and the refractory
and isotopically enriched SCLM had been changed to be fertile and
isotopically depleted. However, the mechanisms and processes of this
lithospheric thinning and mantle transformation have been hotly
s from kimberlites of Mengyin (a,b) and Fuxian (c,d).
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Fig. 6. Hf isotope evolution diagram of the SCLM beneath the NCC before destruction.
Data source: Baddeleyite xenocrysts in the Paleozoic kimberlites (this study); Saima
nepheline syenite (Wu et al., 2010); Zijinshan monzonite (Ying et al., 2007); Cenozoic
SCLM in eastern NCC (Chu et al., 2009; Qiu et al., 2005).
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debated during last decade. Obviously, to investigate how andwhen the
cratonwasdestroyed requires detailed physical–chemical knowledge of
the original SCLM before destruction.

The deep-sourced magmas and trapped mantle xenoliths and
xenocrysts provide critical information of both the chemical composi-
tion and evolution of the SCLM. Extensive studies have been conducted
on mantle xenoliths and SCLM-derived mafic-alkaline rocks in the NCC
(e.g., Chu et al., 2009;Gaoet al., 2002;Huang et al., 2007;Qiuet al., 2005;
Wu et al., 2003, 2006a; 2010; Xu et al., 2008; Ying et al., 2007; Zhang
et al., 2008; Zheng et al., 2006, 2009). However, it is not known if the
Paleozoic SCLM beneath the NCC was isotopically enriched or depleted
since the intensive alteration makes impossible to obtain reliable
isotopic compositions of the peridotite xenoliths in the Paleozoic
kimberlites. It is noted that, despite many studies on the Mesozoic
mantle-derived rocks, crustal contamination during crystallization
similarly makes them unreliable in constraining the characteristics of
the SCLM, and so only those SCLM-derived igneous rocks with little
crustal contamination can provide reliable information. Fortunately,
silica undersaturated nepheline syenite, although rare in the NCC, can
provide useful data on the SCLM evolution in the NCC.

One important nepheline syenite is the Triassic (~225 Ma) Saima
complex in the Liaodong Peninsula of northern China (Fig. 1). It is
composed of an eastern syenite, central alkaline volcanic rocks
(trachyte, leucite phonolite and syenitic porphyry), and western
nepheline syenite (Wu et al., 2010 and references therein). It has been
well documented that this nepheline syenite has fairly homogeneous Hf
isotope composition of 176Hf/177Hf=~0.282330, corresponding to εHf
(t)~−11 (Wu et al., 2010). Another nepheline syenite is the Cretaceous
(~127 Ma) Zijinshan complex, located in western NCC where a thick
Fig. 5. Hf isotope compositions of baddeleyite xenocrysts from kimberlites of Mengyin
(a) and Fuxian (b). The grey line in (a) is from all the Hf isotope analyses from
baddeleyites of Mengyin kimberlite, and dark line is from those Hf isotope data with
internal uncertainty less than 0.00005 (2σm).
lithospheric keel is preserved (Fig. 1). This nepheline syenite includes
monzonite in its outermost part and pseudoleucite phonolitic breccia in
the center. On the basis of geochemistry the monzonite has been
interpreted as mixing of lithospheric mantle-derived magma with
lower-crust derived melts (Ying et al., 2007). The end member of the
SCLM-derived magma has a 176Hf/177Hf isotopic ratio of ~0.282335,
corresponding to εHf(t)~−13.

When all the data discussed above are plotted together (Fig. 6), it can
be seen that the Hf isotopic composition of the SCLM beneath the NCC
evolved in a linear trend which intersects the depleted mantle
at ~1.3 Ga. This age may record a metasomatism event and it is further
supported by the widespread ~1.35 Ga diabase intrusion event in the
NCC (Zhang et al., 2009). This trend can be used to determine the Hf
isotopic nature of the SCLMbefore destruction. Interestingly, themantle
xenoliths hosted in the Cenozoic basalts in eastern NCC have much
higher Hf isotopic ratios (Chu et al., 2009; Qiu et al., 2005), indicating
that the SCLM in the Cenozoic is juvenile, not an ancient residue.
Understanding how andwhen this change happened calls for further Hf
isotope investigations on more SCLM-derived materials to compare
with the constructed Hf isotope evolution trend of the SCLM before the
craton was destroyed.
6. Conclusions

We precisely determine the emplacement age of diamondiferous
kimberlites from Mengyin and Fuxian in the NCC, using three different
dating methods. For the Mengyin kimberlite, single-grain phlogopite
Rb–Sr isochron yielded an age of 485±4 Ma. U–Th–Pb analyses on
perovskite gave 238U–206Pb age of 480.6±2.9 Ma and 232Th–208Pb age
of 478.9±3.9 Ma. The baddeleyites from the Mengyin and Fuxian
kimberlites yielded almost identical Pb–Pb ages of 480.4±3.9 Ma and
479.6±3.9 Ma, respectively, which also are best explained as the
emplacement age of these kimberlites. The Hf isotope compositions (εHf
(480Ma)=~–6) of baddeleyite xenocrysts from these diamondiferous
kimberlites have been used to probe the SCLM beneath the NCC.
Combined with Hf isotopic data of the Meso-Cenozoic SCLM-derived
rocks and mantle xenoliths, the Hf isotope evolution trend of the SCLM
beneath the NCC before destruction was constructed, which revealed
a ~1.3 Ga metasomatism event. Further Hf isotope investigations on
more SCLM-derived materials could be used to compare with the
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constructed Hf isotope evolution trend before craton destruction to
determine when the lithospheric thinning occurred.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.lithos.2011.07.001.
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