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Currently, condition-based maintenance becomes increasingly important with additions of factory auto-
mation through the development of new technologies. For many complicated machines, it is difficult to
use mathematical models to describe their conditions. Intelligent maintenance makes it possible to per-
form maintenance similar to that of a human being. However, conventional artificial intelligent methods
such as neural network and SVM use only labeled data (feature/label pairs) for training. Labeled instances
are often difficult, expensive, or time consuming to obtain. Active learning and semi-supervised learning
address this problem by using a large amount of unlabeled data together with labeled data to build better
models. In this paper, a new active semi-supervised procedure was proposed to perform fault classifica-
tion for machine condition monitoring. The effectiveness of the procedure was verified by its application
to bearing diagnosis and gear fault detection.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since machine maintenance has significant impact in industry,
it has received attention from researchers to practicing engineers.
It is well known that maintenance cost is a major part of the total
operating costs of all manufacturing and production plants. Intelli-
gent maintenance systems make it possible to reduce maintenance
costs. These systems perform maintenance routines as a human
being would. Artificial intelligence (AI) enables the so-called intel-
ligent maintenance system. Application of an expert system (ES) as
a branch of AI in maintenance is one solution.

Support vector machine (SVM) is a relatively new computa-
tional learning method and can serve as an ES. It has been success-
fully applied to a number of applications, including face
recognition, handwriting recognition, webpage classification,
intrusion detection, and breast cancer diagnosis. It also has some
applications in machine condition monitoring. In Fei and Zhang
(2009), SVM with genetic algorithm was applied to fault diagnosis
of a power transformer. Yuan and Chu (2006) presented a new
multi-class SVM method. The effectiveness of the method was ver-
ified by its application to fault diagnosis of a turbo pump rotor.
Abbasion, Rafsanjani, Farshidianfar, and Irani (2007) provided a
procedure for fault classification of rolling bearings using an SVM
classifier. Their method was applied to a three-phase induction
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motor test stand and achieved good performance. More applica-
tions of SVM in machine condition monitoring and fault diagnosis
can be found in a review paper by Widodo and Yang (2007).

However, conventional SVMs use only labeled data for training.
Labeled instances are often difficult, expensive, or time consuming
to obtain, as they require the efforts of experienced human anno-
tators. Meanwhile unlabeled data may be relatively easy to collect,
though hard to use. In recent years, many methods that can be
broadly divided into two groups, semi-supervised and active learn-
ing, have been proposed to solve such problems.

Semi-supervised learning algorithms are mainly based on three
paradigms: density based methods (Chapelle, Sindhwani, &
Keerthi, 2008; Joachims, 1999), graph-based algorithms (Belkin,
Niyogi, & Sindhwani, 2006; Johnson & Tong, 2008; Niyogi, 2008),
and boosting techniques (Saffari, Leistner, & Bischof, 2009). There
are many applications using the semi-supervised learning method,
such as robot control (Großmann, Wendt, & Wyatt, 2003), text
classification (Ghani, 2002), diabetes diseases prediction (Wu,
Diao, Li, Fang, & Ma, 2009) and image classification (Balcan et al.,
2005). A survey on semi-supervised learning was presented in
Zhu (2008).

The objective of active learning is to learn a function that accu-
rately predicts the labels of new examples while requesting as few
labels as possible. Pool-based active learning appears to be much
more common among application papers. It has been studied for
many real-world problem domains in machine learning, such as
text classification (Hoi, Jin, & Lyu, 2006; Tong & Koller, 2002), im-
age classification and retrieval (Tong & Chang, 2001; Zhang & Chen,
2002), video classification and retrieval (Yan, Jie, & Hauptmann,
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2003), and cancer diagnosis (Liu, 2005). Settles (2009) presented a
comprehensive survey about the literature of active learning.

Both semi-supervised learning and active learning can take
advantage of the unlabeled data. It is quite natural to combine
them to form a more effective method. Zhu, Lafferty, and
Ghahramani (2003) proposed an approach to coupled active learn-
ing with semi-supervised learning using Gaussian fields and har-
monic functions. Mao, Lee, Parikh, Chen, and Huang (2009)
proposed a co-training framework, which is a kind of semi-super-
vised learning, to leverage unlabeled data to enhance intrusion
detection and an integrated active labeling mechanism to extract
an expert’s knowledge only for uncertain instances. Yu, Varadara-
jan, Deng, and Acero (2010) proposed a unified global entropy
reduction maximization (GERM) framework for active learning
and semi-supervised learning for speech recognition.

In this paper, a new active semi-supervised method was pro-
posed based on the pool query active learning and manifold regu-
larization semi-supervised method, which is one of the graph
based methods. The rest of the paper is organized as follows. Sec-
tion 2 introduces the theoretical background of SVM, semi-super-
vised SVM, version space and active learning SVM. Section 3 then
proposes our active semi-supervised method and presents a toy
example. In Section 4 we present experimental results for rolling
bearing fault diagnosis and gear fault detection. Finally, we offer
our conclusions in Section 5.
2. Theoretical background

2.1. Support vector machine

Support vector machines (SVMs) are a set of related supervised
learning methods used for classification and regression. Viewing
input data as two sets of vectors in an n-dimensional space, SVMs
construct a separating hyperplane in that space, which maximizes
the margin between the two data sets.

Given training data form {xi, yi}, where i = 1, . . . , l, yi e {�1, 1},
xi e RD (xi has D attributes). The separating hyperplane can be de-
scribed by w � x + b = 0, where w is normal to the hyperplane and
|b|/kwk is the perpendicular distance from the hyperplane to the
origin. All the training data should satisfy the following constraints
(Burges, 1998; Cortes & Vapnik, 1995):

yiðxi �wþ bÞ � 1þ ni P 0 where ni P 0 8i: ð1Þ

The positive slack variable ni, i = 1, . . . , l is introduced to handle data
that is not fully linearly separable. Subject to the constraints in (1),
maximizing the SVM’s margin is equivalent to finding

min
1
2
kwk2 þ C

Xl

i¼1

ni s:t: yiðxi �wþ bÞ � 1þ ni P 0; ni P 0 8i;

ð2Þ

where C controls the trade-off between the slack variable penalty
and the size of the margin.

By solving the dual optimization problem of Eq. (2), the decision
function is given by

f ðxÞ ¼ sign
Xl

i¼1

aiyiKðxi; xÞ þ b

 !
; ð3Þ

where K is known as a Mercer kernel (Burges, 1998). The most pop-
ular non-linear kernels for classification are the radial basis kernel,
the polynomial kernel and the sigmoid kernel. Using these non-lin-
ear kernels, the SVMs can achieve good performance when solving
non-linear separable data.
2.2. Semi-supervised SVM

Semi-supervised learning methods use large amounts of unla-
beled data together with labeled data to build better classifiers.
Since semi-supervised learning requires less human effort and
achieves higher accuracy, it is of great interest both in theory
and in practice (Chapelle, Schölkopf, & Zien, 2006; Zhu, 2008). In
this paper, we mainly focus on the manifold regularization semi-
supervised method, which is one graph based method.

Graph-based semi-supervised methods define a graph where
the nodes are labeled and unlabeled examples in the dataset and
the edges (may be weighted) reflect the similarity of examples.
These methods usually assume label smoothness over the graph.
The manifold regularization framework is one kind of graph based
methods. It employs two regularization terms (Belkin et al., 2006;
Niyogi, 2008):

min
1
l

Xl

i¼1

Vðxi; yi; f Þ þ cAkfk
2
K þ cIkfk

2
I ; ð4Þ

where V is an arbitrary loss function, K is a Mercer kernel, e.g. a lin-
ear or RBF kernel. I is a regularization term induced by the labeled
and unlabeled data.

By using the manifold regularization framework, the SVM can
be extended to Laplacian SVM (LapSVM) by solving the following
problem (Belkin et al., 2006):

min
1
l

Xl

i¼1

ð1� yif ðxiÞÞþ þ cAkfk
2
K þ

cI

ðuþ lÞ2
fT Lf; ð5Þ

where f = [f(x1), . . . , f(xl+u)]T, and L is the graph Laplacian given by
L = D �W. The diagonal matrix D is given by Dii ¼

Plþu
j¼1Wij, and

Wij is edge weight in the data adjacency graph.
The standard SVM Eq. (2) is extended as:

min
a2Rlþu ; n2Rl

1
l

Xl

i¼1

ni þ cAa
T Kaþ cI

ðuþ lÞ2
aT KLKa

s:t: yi

Xlþu

j¼1

ajKðxi;xjÞ þ b

 !
P 1� ni; i ¼ 1; . . . ; l;

ni P 0; i ¼ 1; . . . ; l:

ð6Þ

The dual form of Eq. (6) is formed as:

LD ¼ max
b2Rl

Xl

i¼1

bi �
1
2

bT Qb s:t: 0 6 bi 6
1
l
; i ¼ 1; . . . ; l

and
Xl

i¼1

biyi ¼ 0; ð7Þ

where Q ¼ YJKð2cAI þ 2 cI

ðuþlÞ2
LKÞ�1JT Y .

LapSVM is implemented by using a standard SVM solver with
the quadratic form induced by Eq. (7).

The decision function is:

f ðxÞ ¼
Xlþu

i¼1

aiyiKðxi;xÞ: ð8Þ

Experimental evidences and theoretical analyses suggest that the
LapSVM algorithm is able to use unlabeled data effectively and ob-
tain more accurate classifier (Belkin et al., 2006; Niyogi, 2008).

2.3. Version space and active learning SVM

A version space is the subset of all hypotheses that are consis-
tent with the observed training examples (Mitchell, 1997). Active
learning SVM can be well analyzed by using the version space. In
the following, the concept of version space is briefly presented.
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For the detail, please see (Herbrich, Graepel, & Williamson, 2006;
Tong & Koller, 2002).

Given a set of labeled training data in the input space X, it can be
mapped into a feature space F via a Mercer kernel. In the feature
space, there is a set of hyperplanes that separate the data. This
set of hyperplanes is called version space. In other words, hypoth-
esis f is in version space if for every training instance xi with label yi

we have that f(xi) > 0 if yi = 1 and f(xi) < 0 if yi = �1 .
Let w be the unit vector of a hyperplane in F. The set of possible

hypotheses is given as (Tong & Koller, 2002):

H ¼ f f ðxÞ ¼ w �UðxÞ
kwk ; w 2W

����
� �

; ð9Þ

where W denotes the parameter space and U is a kernel function.
The version space V is defined as (Tong & Koller, 2002):

V ¼ ff 2 Hjyif ðxiÞ > 0; i 2 f1; . . . ;ngg: ð10Þ

A duality can be found between unit vector w in W and hypotheses f
in H. Thus the version space can be redefined as (Tong & Koller,
2002):

V ¼ fw 2Wjkwk ¼ 1; yiðw �UðxiÞÞ > 0; i 2 f1; . . . ;ngg: ð11Þ

Given a training sample (xi, yi), there is a hyperplane, f(x) that can
correctly classify it. According to the duality, the corresponding
hyperplane in W bisects the surface of the hypersphere of kwk = 1,
and only the part satisfying yi(w �U(xi)) > 0 is favored. In this
way, given a training set with n training samples, the version space
is a connected region on the surface of the hypersphere, carved by
the corresponding n hyperplanes. Fig. 1 illustrates such a version
space in a three-dimensional parameter space carved by four
hyperplanes.

As showed in Fig. 1, the surface of the hypersphere represents
unit weight vectors. Each of the four hyperplanes corresponds to
a labeled training instance. Each hyperplane restricts the area on
the hypersphere in which consistent hypotheses can lie. Here,
the convex polyhedron on top is a version space.

In a version space, an SVM classifier has the following geomet-
rical interpretation. Imagining a largest hypersphere with its cen-
ter restricted on the version space and not intersecting with any
hyperplane, the normal vector of the optimal separating hyper-
plane w lies at the center of this largest hypersphere. The training
samples are support vectors if they correspond to the hyperplanes
which are tangent to this largest hypersphere (Tong & Koller, 2002;
Wang, Chan, & Zhang, 2003).

In active learning SVM (A-SVM), w⁄ e W is the unit parameter
vector corresponding to the SVM that we would have known the
Fig. 1. A version space in a three-dimensional space.
actual labels of all of the data. We know that w⁄ must lie in each
of the version spaces V1 � V2� � �, where Vi denotes the version space
after ith query. Thus, we can reduce the space as fast as possible by
shrinking the size of the version space as much as possible with
each query. Assuming that only one unlabeled sample is selected
in each learning cycle (Tong & Koller, 2002) proved that the hyper-
plane induced by this sample should halve the current version
space, and proposed a ‘‘simple method’’ in which this sample is
approximated by the unlabeled sample closest to the current sep-
arating hyperplane. The ‘‘simple method’’ is not the best method in
identifying the desired sample; however, it is suitable for practical
applications (Wang et al., 2003).
3. Active semi-supervised learning

3.1. Theoretical analysis

Suppose we have a training set of labeled and unlabeled sam-
ples, and the number of labeled samples is too few for SVM to build
a classifier with a reasonable level of performance. However, the
unlabeled data can help to build a classifier with greater accuracy.
The goal of active learning with semi-supervised SVM is to query
the unlabeled samples that reveals the most information while
taking into account the information already provided by the pool
of unlabeled samples.

In Fig. 2, we have flattened out the surface of the unit weight
vector hypersphere that appears in Fig. 1. The quadrilateral area
is version space which is bounded by solid lines corresponding to
labeled samples. As shown in Fig. 2, wi corresponds to the ith
SVM solution, w0i is the ith LapSVM solution and w⁄ is the true solu-
tion that we would have known the actual labels of all of the data.
The dotted line is the hyperplane induced by the candidate sample.
According to the active learning SVM analyzed by Section 2.3, we
should choose sample a to query next, as it is close to wi. However,
as the LapSVM solution is more accurate than the SVM solution, w0i
should be closer to w⁄ than wi, or

Dw0i ¼ kw0i �w�k < Dwi ¼ kwi �w�k: ð12Þ

In the next iteration, Dw0iþ1 < Dwiþ1. As shown in Fig. 2, it should be
more effective to reduce the version space if we choose data close to
w0i than if we choose data close to wi. We call this active learning
method with LapSVM solution Active LapSVM (A-LapSVM).

Given an unlabeled pool U, an A-LapSVM learner l has three
components: (f, q, X[U). The first component is a LapSVM classifier,
as shown in (8), trained on the current set of the labeled data X and
the unlabeled samples U. The second component q is the query
function that decides which sample in U to query next. The A-LapS-
VM learner returns a classifier f after each query. The main differ-
ence between an active learner and a passive one is the query
component q (q ¼ arg min

x2U
jf ðxÞj). This brings us to the issue of
Fig. 2. The projection of the parameter space around the version space.



Fig. 3. The diagram of active semi-supervised learning.

Fig. 4. Procedure of A-LapSVM with two moon data set.
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choosing the next unlabeled sample to query. The difference be-
tween A-LapSVM and A-SVM is that A-LapSVM use the samples
both in X and U to train f while A-SVM use only X to do the training.

The diagram of the active semi-supervised learning method is
shown in Fig. 3. Labeled data and unlabeled data are used in
semi-supervised learning (here, we choose LapSVM as the semi-
supervised method). The active learning is processed based on
the output of the semi-supervised learning; it will select the most
informative data to let the oracle (e.g. a human expert) to give the
label. The new labeled data is then used in the semi-supervised
learning. The process iterates until the condition is satisfied and
the output is then the trained model.
3.2. A toy example

We performed the A-LapSVM on the two moons data set (as
shown in Fig. 4). The data set contains 200 examples with only 1
labeled example for each class at the very beginning. The red1 dia-
mond denotes positive type. The blue circle denotes negative type.
The black points represent unlabeled examples and the red cross
represents active selected example. Also shown are the decision
surfaces of the A-LapSVM for each step. We chose RBF kernel as
the kernel function and the kernel parameter was 0.35. The param-
eters in (6) were set to cA = 0.2, cI = 0.5.

Fig. 4 demonstrates how A-LapSVM success to find the most
effective example to query next. We will achieve the optimal solu-
tion after five steps. The A-LapSVM decision boundary seems to be
intuitively quite satisfying in step 6 (Fig. 4(f)). We only need to la-
bel seven examples other than label all of the 200 examples. In
reality, it will reduce the labor cost of labeling to a great extend.
4. Experiment

4.1. Bearing fault diagnosis experiment

In order to verify the feasibility and the effectiveness of the pro-
posed A-LapSVM method for machine fault diagnosis, signals of a
rolling bearing rig at Case Western Reserve University were used
(Loparo, 2003). Experiments were conducted using a 2-horsepower
Reliance Electric motor and acceleration data were measured from
the test rig.

Faults ranging from 0.007 to 0.040 in. in diameter were intro-
duced separately at the inner raceway, rolling element (i.e. ball),
and outer raceway. Faulty bearings were reinstalled into the test
motor and vibration data were recorded for motor loads of 0 to
3-horsepower (motor speeds of 1797 to 1720 RPM). Ten conditions
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
were considered in this study: normal, slight inner race fault, mod-
erate inner race fault, severe inner race fault, slight outer race fault,
moderate outer race fault, severe outer race fault, slight ball fault,
moderate ball fault, and severe ball fault. Seven hundred and sixty
instances were obtained for ten machine conditions (76 instances
for each condition). One hundred and sixty instances were selected
as the test samples (16 instances were randomly selected for each
condition); the remaining instances were used as training samples.

Six time-domain features (root mean square, peak, skewness,
kurtosis, shape factor, and impulse factor), four frequency-domain
features (mean frequency, frequency center, root mean square fre-
quency, and standard deviation frequency) and 32 wavelet coeffi-
cients energy (by five-layer wavelet packet decomposition) were
respectively extracted to demonstrate the fault-related information.

Since these fault feature vectors had 42 dimensions and there
existed correlations between them, the principal component anal-
ysis (PCA) (Bishop, 2006) was used for feature selection and
dimension-reduction to decrease redundant variables in the data.
By the PCA method, three principal components were chose to
form the 3-dimensional fault feature vectors. These 3-dimensional
fault feature vectors are shown in Fig. 5, in which the different
shape graphics are data of different faults. It is visible that they
are classifiable.

In the training phase, different numbers of training samples
were used as labeled samples. SVM, A-SVM, LapSVM, and A-LapS-
VM methods were used to perform the classification of the ma-
chine conditions. During each test, it took 100 cycles to achieve
the average accuracy. The RBF kernel was used as the mapping
function. Genetic algorithm and cross-validation were used to opti-
mize the parameters (RBF kernel parameter r = 0.0768, C = 0.6681
in (2) and cA = 0.7484, cI = 0.2606 in (6)).

The accuracy rate of the classification based on different meth-
ods can be seen from Fig. 6. When the labeled data is very few, the
Fig. 5. Three-dimensional fault feature vectors.
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A-LapSVM achieves better performance than other methods. The
results verify the effectiveness of the proposed A-LapSVM method,
especially when the number of labeled sample is very low.

The proposed A-LapSVM method only desires quit a few labeled
data to achieve sufficient accuracy. As shown in Fig. 6, it requires
only 40 labeled data to achieve 96% accuracy while other methods
need about 200 labeled data to obtain the same accuracy. This
method will select the most informative data instances for labeling
by the users in the learning round; it is an efficiently interactive
learning technique designed to reduce the labor cost of labeling.
In other words, the proposed A-LapSVM method is to select an
optimal set of unlabeled data instances that minimizes the ex-
pected risk of the learning round.
4.2. Gear fault detection experiment

Health monitoring of a gearbox experiment table with different
gear fault was also used as an example to validate the proposed A-
LapSVM method. Shown in Fig. 7 is the gearbox experiment table,
which is installed in the Institute of Diagnosis and Monitoring at Uni-
versity of Science and Technology Beijing. The geared sleeve with
different gear fault was used in the experiment. In this experiment,
we chose six gear conditions: healthy, wearout fault, snaggletooth
fault, backlash oversize, backlash undersize, and gear crack.

The speed of driving gear shaft was 900 RPM and the load pro-
duced by damper (shown in Fig. 7) was set to 5 Nm. B&K 4394
accelerometer, as shown in Fig. 7, was used to measure the vibra-
tion. 01dB data acquisition system was used to perform data record
with a sampling rate of 16,384 Hz. A total of 1194 instances were
Fig. 7. Gearbox experiment table.
obtained for the six gear conditions (199 instances for each condi-
tion). Two hundred and forty instances were selected as the train-
ing samples (40 instances were randomly selected for each
condition); the remaining instances were used as test samples.

Four time-domain features (root mean square, peak value,
skewness, and kurtosis) and six frequency-domain features (mag-
nitude of axial frequency, axial frequency doubling, axial frequency
tripling, rotation frequency, rotation frequency doubling, and rota-
tion frequency tripling) were respectively extracted to reveal the
fault-related information. PCA was also used for dimension-reduc-
tion and three principal components were chose to form the 3-
dimensional fault feature vectors.

SVM, A-SVM, LapSVM, and A-LapSVM methods were used to
perform the classification. In the training phase, different numbers
of training samples were used as labeled samples. During each test,
it took 100 cycles to achieve the average accuracy. The RBF kernel
was used as the mapping function. Genetic algorithm and cross-
validation were used to optimize the parameters (RBF kernel
parameter r = 0.1443, C = 0.7703 in (2) and cA = 0.6491,
cI = 0.3203 in (6)).

The accuracy rate of the classification based on different meth-
ods can be seen from Fig. 8. When the labeled data is very few, the
proposed A-LapSVM achieves better performance than other meth-
ods. The results indicate that active semi-supervised learning will
be able to find the most informative data instance and significantly
reduce the need for labeled instances in practice.

5. Conclusions

Machine condition monitoring is essentially a kind of pattern
recognition or classification. We developed a new method A-LapS-
VM based on active learning and semi-supervised method with
manifold regularization. The proposed method uses large amount
of unlabeled data, together with the labeled data, to build better
classifiers. The effectiveness of the method was analyzed under
the version space theory framework and was also verified by its
application to the bearing diagnosis and gear fault detection. Com-
pared to the state-of-the-art SVM, A-SVM, and LapSVM, the pro-
posed A-LapSVM achieves better performance when there are
only a few labeled data. It is an efficiently learning technique de-
signed to reduce the labor cost of labeling.
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