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Abstract
The finite-difference (FD) method is a powerful tool in seismic wave field modelling for
understanding seismic wave propagation in the Earth’s interior and interpreting the real seismic
data. The accuracy of FD modelling partly depends on the implementation of the free-surface
(i.e. traction-free) condition. In the past 40 years, at least six kinds of free-surface boundary
condition approximate schemes (such as one-sided, centred finite-difference, composed, new
composed, implicit and boundary-modified approximations) have been developed in FD second-
order elastodynamic simulation. Herein we simulate seismic wave fields in homogeneous and
lateral heterogeneous models using these free-surface boundary condition approximate schemes
and evaluate their stability and applicability by comparing with corresponding analytical
solutions, and then quantitatively evaluate the accuracies of different approximate schemes
from the misfit of the amplitude and phase between the numerical and analytical results. Our
results confirm that the composed scheme becomes unstable for the Vs/Vp ratio less than 0.57,
and suggest that (1) the one-sided scheme is only accurate to first order and therefore introduces
serious errors for the shorter wavelengths, other schemes are all of second-order precision; (2)
the new composed, implicit and boundary-modified schemes are stable even when the Vs/Vp

ratio is less than 0.2; (3) the implicit and boundary-modified schemes are able to deal with
laterally varying (heterogeneous) free surface; (4) in the corresponding stability range, the
one-sided scheme shows remarkable errors in both phase and amplitude compared to analytical
solution (which means larger errors in travel-time and reflection strength), the other five
approximate schemes show better performance in travel-time (phase) than strength (amplitude).

Keywords: free-surface boundary condition, finite-difference modelling, stability, accuracy

1. Introduction

The real surface of the Earth is an impedance-mutated interface
of a half-space in contact with vacuum, known as free surface.
This topography leads to tremendous influences upon seismic
exploration of hydrocarbon and non-hydrocarbon resources or
deep structure of the Earth’s interior, such as decreasing signal
to noise ratio of seismic data from irregular topography. In
order to interpret real seismic data and understand seismic

wave propagation in the Earth’s interior, the free-surface
boundary condition must be satisfied at the top boundary of the
model. In principle, it is very simple to assume the boundary
condition as the surface with zero vertical stress (stress-free
surface), but it is still a challenge in numerical simulation of
seismic wave propagation.

Parallel to the development of absorbing boundary
conditions in 2 and 3D media (Clayton and Enquist 1977,
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(a) (b)

Figure 1. The grid imposed on the half plane as used in the centred difference, one-sided approximations (a) and implicit approximation (b).

Engquist and Majda 1977, Reynolds 1978, Liao et al 1984,
Cerjan et al 1985, Higdon 1991, Zhang et al 1993, 1999,
Berenger 1994, Cao and Greenhalgh 1998, Yang et al 2002,
2003, Komatitsch and Tromp 2003, Wu and Liang 2005,
Tian et al 2008, Chen and Bording 2010), numerous methods
to deal with the free-surface boundary condition have been
proposed in the past four decades since the development
of finite-difference approximations of the elastodynamic
equations in second-order formulation (Alterman and Karal
1968, Alterman and Rotenberg 1969). These schemes can
be divided into two kinds: (1) adding a fictitious layer above
the free surface (figure 1), which includes a centred finite-
difference approximation (Alterman and Karal 1968), a one-
sided approximation (Alterman and Rotenberg 1969) and
an implicit boundary update technique (Vidale and Clayton
1986).

In all these three approximations the derivatives with
respect to x are replaced by central differences. These
approximations differ in the way in which the normal
derivatives are represented. The first two approximations are
explicit, for approximation 1 (centred), centred differences
are used, while for approximation 2 (one sided), one-sided
differences are used to express the first-order derivatives with
respect to z along the free surface. The third approximation
uses an implicit formulation which centres both the normal and
tangential derivatives at the free surface, halfway between row
0 and row 1. The scheme is similar in concept to the Crank–
Nicholson method for the diffusion equation (Crank and
Nicolson 1996). More details on these three approximations
can be found in appendix A.

(2) Substitution of the derivatives normal to the free
surface without any fictitious layer above the free surface
(figure 2). This also includes three schemes: a composed
approximation (Ilan et al 1975), a remedy scheme (new
composed approximation) (Ilan and Loewenthal 1976, Ilan
1978) and also a boundary-modified difference approximation
(Nilsson et al 2007, Lan and Zhang 2011).

The composed approximation is based on an approach
which was developed by Ilan et al (1975). According to this
approach the z derivatives on the free surface are first replaced
by x and t derivatives, by using the equations of motion. Then
centred differences are applied. Due to the substitution of
the derivatives normal to the free surface no fictitious line is
required. More details on this approximation can be found in
appendix B.

The composed approximation could not handle the case
where the ratio of the shear (S) to compressional (P) wave

Figure 2. The grid imposed on the half plane as used in the
composed, new composed and boundary-modified difference
approximations.

velocities (Vs/Vp) is less than 0.57 (Ilan et al 1975). Ilan and
Loewenthal (1976) and Ilan (1978) proposed a revised method
(new composed approximation) (refer to appendix C for more
details).

The boundary-modified difference approximation is a
stable and explicit discretization of the free-surface boundary
conditions presented by Nilsson et al (2007). In summary,
they introduced a discretization that uses boundary-modified
difference operators for the mixed derivatives in the governing
equations and showed that the method is second-order accurate
for problems with smoothly varying material properties and
stable under standard Courant–Friedrichs–Lewy constraints,
for arbitrarily varying material properties (refer to appendix D
for more details). Lan and Zhang (2011) extended the scheme
in modelling the 3D–3C wave field in the anisotropic medium
with an irregular free surface.

In this study, we compare the above approximate methods
for dealing with the free-surface boundary condition.

2. Wave equation and the free-surface boundary
condition

In order to facilitate the treatment of the free-surface boundary
condition presented here we consider an elastic half space case,
as the free-surface boundary condition of zero-vertical stress
components is always valid, and this simplification leads to
the classical Lamb’s problem (Lamb 1904) and its analytical
solution (De Hoop 1960) provides a standard reference to
check the accuracy of different approximations of the free-
surface boundary condition in the finite difference wave field
modelling.

Let the x axis be parallel to the horizontal free surface and
the z axis pointing vertically downwards. The free surface is
assumed to be along z = 0 and the half space is contained
in the region with z � 0. Let u and v be the horizontal and
vertical displacements in the x and z directions, respectively.
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The elastic equations of wave motion in isotropic media are
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where λ(x, z) and μ(x, z) are elastic parameters; ρ(x, z) is
density.

The classic free-surface boundary conditions on z = 0 for
the tangential and normal stress components are

μ
∂u

∂z
+ μ

∂v

∂x
= 0, (3)

(λ + 2μ)
∂v

∂z
+ λ

∂u

∂x
= 0. (4)

A grid is imposed on the xz plane (see figures 1 and 2) in finite
difference modelling of elastic wave field. The grid implies
the spatial discretizations performed along the x and z axes
with equal spacing of �x,�z, respectively. A further
discretization is assumed in time, x = i�x; z =j�z;t=p�t

with i, j and p integers. In order to simplify notation we
assume equal spatial increments �x = �z = h. The standard
finite difference approximations to the elastic wave equation
(Kelly et al 1976) can be used to determine the solution on the
inner points. Along the boundary points of the grid which
coincides with the free surface a special treatment, which
uses the boundary condition given by equations (3) and (4),
is needed. Note that the problem is how to deal with above
equations (equations (3) and (4)) as the free-surface boundary
condition in the finite difference modelling using equations (1)
and (2).

3. Comparison of the stability and accuracy of the
different free-surface boundary approximate
schemes

To evaluate the performance of the six approximate schemes
mentioned above for the free-surface boundary condition,
in the following we compare the stability and accuracy of
different free-surface boundary approximate schemes with the
analytical solution of De Hoop (1960) in a homogeneous
half space (which includes three models) and a lateral
heterogeneous model, respectively. Ilan et al (1975) suggested
that the composed approximation method cannot handle the
case where the ratio of the shear (S) to compressional (P)
wave velocities (Vs/Vp) is less than 0.57. In order to
discuss the performance of different free-boundary condition
approximate schemes at different Vs/Vp ratios, we design three
homogeneous half models with Vs/Vp ratios of 0.725, 0.43
and 0.2, respectively. In the following modelling, we assume
a vertical point source:

f (t) = e−0.5f 2
0 (t−t0)

2
cos πf0(t − t0), (5)

Figure 3. The first model of a homogeneous half-space.

with t0 = 0.5 s for the former two homogeneous models and
changed to 2.0 s for the third homogeneous model located
at a point 1 km below the free surface. The source–receiver
distance ranges from 3λs

dom to 15λs
dom (λs

dom is the dominant
wavelength of the S waves); this range is typical in the study of
earthquake ground motion modelling in sedimentary valleys
and basins.

3.1. Homogeneous half-space models

3.1.1. Model 1. Figure 3 is a half-space elastic medium
with the free surface as a test model. The P-velocity is
3000 m s−1, the S-velocity 2175 m s−1, and the density
2500 kg m−3. Thus, the dominant and minimum wavelengths
of the S wave are λs

dom = 290 m and λs
min = 145 m (λs

min is the
minimum wavelength of the S waves), respectively. The high
cut-off frequency is 10 Hz, the grid spacing is 10 m and the
time step is 1.5 ms. Different free-surface implementations are
compared with the analytical solution of De Hoop (1960). We
present waveforms with the offsets of 3 and 6 km, respectively
(figures 4 and 5). From figures 4 and 5, we can see that all the
numerical methods are stable and produce accurate results for
this model. The slight differences in sharpness between the
analytical solution and the finite-difference trace are due to the
grid dispersion in the finite-difference method; the deviations
become greater as the propagation distance increases.
The surface wave dispersion is more severe than body
waves.

3.1.2. Model 2. The elastic parameters for this model are:
the P-velocity is 3500 m s−1, the S-velocity 1500 m s−1, and the
density 2000 kg m−3. The ratio of the S- to P-wave velocities
is about 0.43. The high cut-off frequency is 10 Hz, the grid
spacing is 10 m and the time step is 1.5 ms. Figures 6
and 7 show the horizontal and vertical components of
the particle displacement, respectively, with the offset of
4 km. The new composed scheme, implicit scheme and
boundary-modified scheme are consistent with the analytical
solution. The central-difference scheme is less accurate
than the previous three methods. The one-sided scheme is
only accurate to first order and therefore introduces more
error at the short wavelengths, particularly in the horizontal
component. The composed scheme goes out of bounds after
the computation has run a few steps.
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Figure 4. Waveform comparisons of the vertical component between analytical and numerical solutions at the receiver R1 with the
source–receiver distance D = 3 km for the homogeneous medium model 1. The numerical methods used for comparisons are
central-difference, one-sided, composed, new composed, implicit and boundary-modified approximations of the free-surface boundary
conditions, respectively.
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Figure 5. The same as in figure 4 but at the receiver R2 with the source–receiver distance D = 6 km.
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Figure 6. Waveform comparisons of the horizontal component between analytical and numerical solutions at a receiver with the
source–receiver distance D = 4 km for the homogeneous medium model 2. The numerical methods used for comparison are
central-difference, one-sided, composed, new composed, implicit and boundary-modified approximations of the free-surface boundary
conditions, respectively.
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Figure 7. The same as in figure 6 but for the vertical component.
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Figure 8. The seismograms recorded at the receiver with the offset of 3 km for the central-difference (CDA), one-sided (OSA), composed
(CA), new composed (NCA), implicit (IA) and boundary-modified difference (BMA) approximations of the free-surface boundary
conditions are shown for homogeneous medium model 3. (a) Horizontal component; (b) vertical component.

3.1.3. Model 3. The model with the Vs/Vp of 0.2 has been
used to investigate the various free-surface implementations.
The P-velocity is 3500 m s−1, the S-velocity 700 m s−1,
and the density 1000 kg m−3. The high cut-off frequency is
2 Hz, the time step is 2.5 ms and the grid spacing is 25 m.
The receivers with the offset of 3 km are shown in figure 8.
The new composed scheme, implicit scheme and boundary-
modified scheme also have good agreement. The composed
scheme, one-sided scheme and central-difference scheme go
out of bounds one after the other. The experiment indicates
that the new composed scheme, implicit scheme and boundary-
modified scheme are stable and accurate even for the Vs/Vp

ratio lower than 0.2.

3.2. A lateral heterogeneous model

A model with lateral heterogeneity is shown in figure 9. In
the marked region below the receiver, which is 2.0 km wide
and 0.1 km deep, the P-velocity is 1300 m s−1, the S-velocity
is 600 m s−1, and the density is 1000 kg m−3. In the rest of
the half space, the P-velocity is 3500 m s−1, the S-velocity is
2000 m s−1, and the density is 2600 kgm−3. An explosive
source with the high cut-off frequency of 2 Hz is placed at a
point located at 1.2 km below and 1 km from the left boundary
of the marked region. The time step is 2.5 ms and the grid
spacing is 25 m.

The records for the offsets of −2 and 2 km from various
implementations of the free-surface boundary condition are
shown in figures 10 and 11. Results of the central-difference
scheme, one-sided scheme, new composed scheme, implicit
scheme and boundary-modified scheme from recorder R1
which is far from the marked region have good agreement. The
composed scheme is unstable. The central-difference scheme
does not converge after a few minutes of wave propagation.
The composed scheme and central-difference scheme go out
of bounds earlier in the records located at R2 than those at R1.
Reflected waves generated at the top and bottom boundaries of

Figure 9. A laterally varying structure.

the marked region. The new composed scheme and boundary-
modified scheme have good agreement. Differences between
these two explicit schemes and the implicit scheme in the later
part of the records arises from the small difference in the free-
surface position, which is half a mesh spacing nearer the source
in the explicit schemes than in the implicit scheme.

The results have some differences compared with that of
Vidale and Clayton (1986), and their results show that the one-
sided scheme is not accurate, particularly for the horizontal
component. The new composed scheme is slightly unstable.
However, in our simulation experiments, the new composed
scheme does not appear to be unstable, so their conclusion that
the new composed scheme cannot handle laterally varying
media properly should be revisited based on our modelling
results.

4. Quantitative evaluation of the accuracy of the
different free-surface boundary condition
approximations

In general, it is better to evaluate the accuracy of the numerical
methods in a quantitative way using some reasonably defined
error criteria. Here, we use a method proposed by Kristek
et al (2002) to evaluate the accuracy of the schemes presented

280



Comparison on the free-surface boundary condition in finite-difference wave field simulation

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

Time/s

A
m

pl
itu

de

 

 
CDA
OSA
CA
NCA
IA
BMA

(b)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

Time/s

A
m

pl
itu

de

 

 
CDA
OSA
CA
NCA
IA
BMA

(a)

Figure 10. The seismograms recorded at the receiver with the offset of −2 km for the central-difference (CDA), one-sided (OSA),
composed (CA), new composed (NCA), implicit (IA) and boundary-modified difference (BMA) approximations of the free-surface
boundary conditions are shown for the laterally varying media. (a) Horizontal component; (b) vertical component.
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Figure 11. The same as in figure 10 but for the offset of 2 km.

above for simulation of the planar free surface. Let S(t) be the
tested solution and SREF(t) the reference solution.

An integral criterion, say misfit M, can be defined as

M =
√∑

m [SREF(tm) − S(tm)]2√∑
m S2

REF(tm)

. (6)

Although the criterion is used for the comparisons of numerical
solutions, it is not difficult to check that it accounts more for
a phase misfit than for an amplitude misfit. To evaluate the
accuracy in both amplitude and phase, Kristek et al (2002)
defined the envelope misfit EM as

EM =
√∑

m [|�

SREF(tm)| − |�

S(tm)|]2√∑
m |�

SREF(tm)|2
(7)

and the phase misfit PM as

PM =

√∑
m [|�

SREF(tm)|Arg(
�

SREF(tm)
/

�

S(tm))]2

π ·
√∑

m |�

SREF(tm)|2
, (8)

where
�

SREF(t) and
�

S(t) are analytical signals of SREF(t) and
S(t), respectively, and Arg(ϕ) is the principal value of the
argument of a complex quantity ϕ.

Figures 12 and 13 show the envelope and phase misfits for
the previous figures for all tested methods for the homogeneous
models 1 and 2, respectively. The phase misfit for a given
source–receiver distance is largest in the one-sided scheme in
both models. The misfit values for the horizontal component
of model 1 in the central-difference and implicit schemes
fluctuate along with the propagation distance, which are
smaller than that in the one-sided scheme. The phase misfit
for a given source–receiver distance is smallest in the new
composed and boundary-modified schemes; the values are
relatively close to each other and both less than 0.05, which
may indicate that these two methods can give accurate travel-
time of a seismic wave field. This is in agreement with
the conclusion based on simple visual comparisons of the
seismograms.

The envelope misfit is largest in the one-sided solution and
smallest in the new composed scheme and boundary-modified
solutions. The misfits of the vertical component are smaller
than those of the horizontal component, and this may be due to
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Figure 12. Accuracy of the investigated methods for simulation of the planar free surface of the homogeneous model 1. The envelope and
phase misfits are evaluated against the normalized epicentral distance.
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Figure 13. The same as in figure 12 but for the homogeneous model 2.

the source used in the modelling. Considering the differences
in phase misfits and envelope misfits of the investigated
methods we recommend that the boundary-modified method is
slightly better than other methods for simulation of the planar
free surface of homogeneous half space.

5. Conclusions

Various free-surface implementations based on the second-
order wave equations have been compared. We extend the
composed approximation and new composed approximation to
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inhomogeneous media. Many of these implementations have
been proved to be unstable or to produce inaccurate results.
The one-sided scheme is only accurate to the first order and
therefore introduces severe error for shorter wavelengths. The
central difference and composed scheme are unstable, while
the boundary-modified and implicit schemes are stable and
accurate for low β

/
α ratios. Our study here suggests that a

stable and explicit approximation scheme to model free surface
in seismic modelling in a homogeneous model proposed by
Nilsson et al (2007) can be extended to inhomogeneous media,
and even an irregular free surface.
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Appendix A. The central difference, one-sided and
implicit approximate schemes

Let z = 0 be the free surface of the half space. In the central
difference, one-sided and implicit approximations a fictitious
line is added parallel to the free surface at z = −h. The
displacements on the free surface are computed as inner points
and the values on the fictitious line are computed from the
boundary conditions. It is convenient to denote the squared
ratio of the spatial to time increments as ξ = �t2

h2 , and γ as
λ

λ+2μ
.

(1) Centred approximation:

u
p

i,0 = u
p

i,2 +
(
vP

i+1,1 − vP
i−1,1

)
, (A.1)

vP
i,0 = vP

i,2 + γ
(
u

p

i+1,1 − uP
i−1,1

)
. (A.2)

(2) One-sided approximation:

u
p

i,0 = u
p

i,1 + 0.5
(
vP

i+1,1 − vP
i−1,1

)
, (A.3)

vP
i,0 = vP

i,1 + 0.5γ
(
u

p

i+1,1 − uP
i−1,1

)
. (A.4)

(3) Implicit approximation: Applying centred differences to
equations (3) and (4), we obtain

u
p

i,0 − 1
4

(
vP

i+1,0 − vP
i−1,0

) = u
p

i,1 + 1
4

(
vP

i+1,1 − vP
i−1,1

)
, (A.5)

v
p

i,0 − γ

4

(
uP

i+1,0 − uP
i−1,0

) = v
p

i,1 +
γ

4

(
uP

i+1,1 − uP
i−1,1

)
.

(A.6)

Equations (A.5) and (A.6) can be further reduced to separate
systems for the unknown vectors u0 and v0:

− γ

16
u

p

i+2,0 +
(

1 +
γ

8

)
u

p

i,0 − γ

16
u

p

i−2,0 = γ

16
u

p

i+2,1

+
(

1 − γ

8

)
u

p

i,1 +
γ

16
u

p

i−2,1 +
1

2
(vi+1,1 − vi−1,1), (A.7)

− γ

16
v

p

i+2,0 +
(

1 +
γ

8

)
v

p

i,0 − γ

16
v

p

i−2,0 = γ

16
v

p

i+2,1

+
(

1 − γ

8

)
v

p

i,1 +
γ

16
v

p

i−2,1 +
γ

2
(ui+1,1 − ui−1,1). (A.8)

The matrices on the left-hand side of equations (A.7) and (A.8)
are pentadiagonal and can be solved rapidly using an algorithm
that is a simple extension of the standard tridiagonal solver
(Claerbout 1976). The vectors on the right-hand side can be
computed from displacements on row 1.

The boundary conditions derived above must be modified
for the two extreme edge elements on each side of the free
surface, shown as open circles in figure 1(b). At these two
points, the Bl absorbing boundary conditions of Clayton and
Engquist (1977) are applied. For the component u on the left
side of the grid, the boundary conditions in equation (A.7) are
modified to be

(1 + δ)u
p

0,0 + (1 − δ)u
p

1,0 = (1 − δ)u
p−1
0,0 + (1 + δ)u

p−1
1,0 ,

(A.9)

(1 + δ)u
p

1,0 + (1 − δ)u
p

2,0 = (1 − δ)u
p−1
1,0 + (1 + δ)u

p−1
2,0 ,

(A.10)

where δ = α�t
/
h, �t is the time step. Here (u0,0, u1,0, u2,0)

are the first three elements of the vector u0, and superscripts t
and t − 1 refer to the present and previous time steps. These
equations are most effective to absorb horizontally travelling P-
waves. Similar equations are used for the vertical component
v, except that δ = (β�t)/h is used to absorb horizontally
travelling S-waves. The mirror images of these conditions are
used at the right edge of the free surface. Equations (A.9)
and (A.10) to solve u0,0, u1,0 are given below

u
p

0,0 = (1 − δ)2

(1 + δ)2
u

p

2,0 +
(1 − δ)

(1 + δ)
u

p−1
0,0 + u

p−1
1,0 − (1 − δ)2

(1 + δ)2
u

p−1
1,0

− (1 − δ)

(1 + δ)
u

p−1
2,0 , (A.11)

u
p

1,0 = −1 − δ

1 + δ
u

p

2,0 +
1 − δ

1 + δ
u

p−1
1,0 + u

p−1
2,0 . (A.12)

Appendix B. The composed approximate scheme

In this paper, we extend this method to heterogeneous media.
Differentiating equations (3) and (4) with respect to x, we

obtain

uxz = −vxx, (B.1)

vxz = − λ

λ + 2μ
uxx. (B.2)
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Substituting equations (B.1) and (B.2) in the wave
equations (1) and (2), we can obtain

ρ
∂2u

∂t2
= ∂

∂x

(
(λ + 2μ)

∂u

∂x

)
− λ

λ + 2μ

∂λ

∂x

∂u

∂x
+ μ

∂2u

∂z2

− λ(λ + μ)

λ + 2μ

∂2u

∂x2
, (B.3)

ρ
∂2v

∂t2
= ∂

∂x

(
μ

∂v

∂x

)
− ∂μ

∂x

∂v

∂x
− (λ + μ)

∂2v

∂x2

− λ

λ + 2μ

∂(λ + 2μ)

∂z

∂u

∂x
+ (λ + 2μ)

∂2v

∂z2
+

∂λ

∂z

∂u

∂x
. (B.4)

The displacements are expanded around a surface point (i, 1)
into the following Taylor series:

u(i, 2, p) = u(i, 1, p) + huz(i, 1, p) + 1
2h2uzz(i, 1, p)

+ O(h3), (B.5)

v(i, 2, p) = v(i, 1, p) + hvz(i, 1, p) + 1
2h2vzz(i, 1, p)

+ O(h3). (B.6)

Using the boundary conditions (3) and (4), wave
equations (B.3) and (B.4) to replace the first and second
derivatives respectively, and then using the central differences
to approximate the x derivatives, we finally obtain the explicit
finite difference equations for the displacements on the free
surface:

u
p+1
i,1 = 2[1 − μi,1

ρi,1
ξ +

λi,1(λi,1 + μi,1)

ρi,1(λi,1 + 2μi,1)
ξ ]up
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i,1
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u

p
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1

2ρi,1
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{
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(
u

p

i+1,1 − u
p
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+ (λi−1,1 + 2μi−1,1)]
(
u

p

i,1 − u
p

i−1,1

)}
− 1

4
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ξ(λi+1,1 − λi−1,1)

(
u

p

i+1,1 − u
p

i−1,1

)

− λi,1(λi,1 + μi,1)

ρi,1(λi,1 + 2μi,1)
ξ(u

p

i+1,1 + u
p

i−1,1)
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μi,1
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(
v

p

i+1,1 − v
p

i−1,1

)
, (B.7)
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)
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ξ
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p

i−1,1)
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ξ

2
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(
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i+1,1 − u
p
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)
. (B.8)

For homogeneous media the equations can be reduced to

u
p+1
i,1 = 2

[
1 − 2ξβ2

(
2 − β2

α2

)]
u

p

i,1 − u
p−1
i,1 + 2ξβ2u
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(B.9)

v
p+1
i,1 = 2

(
1 − 2ξβ2

)
v

p

i,1 − v
p−1
i,1 + 2ξα2v

p

i,2

− ξα2
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1 − 2β2
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) (
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i+1,1 + v
p

i−1,1

)

+ ξα2

(
1 − 2β2

α2

) (
u

p

i+1,1 − u
p

i−1,1

)
. (B.10)

Numerical modelling results indicate that the method is
unstable when the ratio of the S- to P-wave velocities (Vs/Vp)
is less than 0.57 (Ilan et al 1975). Ilan and Loewenthal
(1976) supported that the formula for v on the surface is
responsible for the instability of the composed method. They
also proposed a revised method and the vertical component of
the displacement has been changed in the following manner.

Appendix C. The new composed approximate
scheme

The vertical component of the displacement is expanded
around a surface point (i, 1) into the following Taylor series:

v(i, 2, p) = v(i, 1, p) + h
∂v(i, 1, p)

∂z
+

1

2
h2 ∂2v(i, 1, p)

∂z2

+ O(h3). (C.1)

The boundary condition (3) and the equation of motion (2) are
rewritten in the forms
∂v

∂z
= λ

λ + 2μ

∂u

∂x
, (C.2)
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∂z
− ∂λ
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∂u

∂x

)
. (C.3)

Substituting equations (C.2) and (C.3) into equation (C.1)
gives a new formula, and then replacing x and t derivatives
by central finite differences and z derivative by the forward
difference we obtain an explicit equation for v on the free
surface:

v
p+1
i,1 = −v
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i,1 + 2
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]
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+
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For homogeneous media the equation is reduced to
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Appendix D. The boundary-modified approximate
scheme

In this scheme, a one-sided operator is used on the boundary
for the approximation of the normal derivative in ∂x∂z and
∂z∂x cross derivatives (in 2D as an example), and displacement
components at the free-surface boundary are approximated as
the following expressions:
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(D.1)
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[
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(D.2)

The free-surface boundary conditions can be discretized as
1
2 [(μ)i,3/2D

z
+ui,1 + (μ)i,1/2D

z
+ui,0] + (μ)i,1D

x
0 vi,1 = 0,

(D.3)
1
2 [(λ + 2μ)i,3/2D

z
+vi,1 + (λ + 2μ)i,1/2D

z
+vi,0]

+ (λ)i,1D
x
0 ui,1 = 0, (D.4)

i = 1, ..., Nx.

At first glance, it may appear that using a one-sided
operator the accuracy of the method would be reduced to
the first order. However, as it was theoretically shown in
Nilsson et al (2007), a first-order error on the boundary in
the differential equations (D.1) and (D.2) can be absorbed as
a second-order perturbation of the boundary conditions (D.3)
and (D.4).
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