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ABSTRACT

Split-step Fourier and generalized-screen migration meth-
ods are approximations with separation of variables to the
one-way wave operator, in which the separation of space and
wavenumber variables makes it possible to use the discrete
fast Fourier transform to achieve computational efficiency.
Both methods require the selection of reference velocities.
Different choices of reference velocities lead to different ve-
locity perturbations, and the smaller the velocity perturba-
tions, the better the final image quality. The benefits of select-
ing a more representative reference velocity for the split-step
Fourier method can be extended to the generalized-screen
method by removing the limitation on the reference velocity
for the generalized-screen method. Numerical experiments
on the Marmousi model demonstrate the improvement of im-
aging by using an average velocity instead of the minimum
velocity as the reference velocity for the generalized-screen
method.

INTRODUCTION

Seismic migration is a wave-equation-based process that creates
he image of structures within the earth from recorded data on the
urface. With its scope increasingly broadening, seismic migration
as now become a central step in seismic data processing �Gray et
l., 2001�. Seismic migration algorithms can be classified into two
ategories: integral methods and wavefield-continuation methods
Biondi, 2006�.

Wavefield-continuation methods are more suited to image regions
ith complex geology. Split-step Fourier �SSF� and generalized-

creen �GS� methods are wavefield-continuation methods �Stoffa et
l., 1990; Le Rousseau and de Hoop, 2001�. By introducing a refer-
nce velocity, these two methods can be formulated as separable ap-
roximations of the one-way wave operator �Chen and Liu 2004,
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006; Chen et al., 2007�. Separable approximations of the one-way
ave operator are also called approximations with separation of
ariables. The separation of space and wavenumber variables char-
cterizes separable approximations and makes it possible to use the
iscrete fast Fourier transform to reduce computational cost. Ap-
roximations with separation of variables can also be applied to re-
erse-time migrations because the two-way wave equation can be
ast into a wave equation in the form of the one-way wave operator
y introducing a complex-valued wave equation �Zhang and Zhang,
009�.

The SSF method applies to media with weak lateral velocity vari-
tions. The GS method is a generalization of the SSF method and ap-
lies to media with strong lateral velocity variations at a higher com-
utational cost in comparison with the SSF method. However, an ad-
antage of the SSF method is not inherited in the GS method; that is,
here is no limitation on reference velocities for the SSF method,
hereas for the GS method, the reference velocity is required to be

he minimum in the extrapolation interval to avoid singularity. Be-
ause no restriction is imposed on reference velocities for the SSF
ethod, one can use an average velocity as the reference velocity

hat results in a small velocity perturbation. On the other hand, be-
ause of the minimum-velocity requirement of reference velocities
or the GS method, the resulting velocity perturbation is relatively
arge, which compromises the higher accuracy of the GS method.
herefore, a problem occurs: How can one overcome the limitation
n reference velocities for the GS method, thus take advantage of the
maller velocity perturbation, and so have higher fidelity in extrapo-
ation? To give a solution to this problem, I carefully explore the

echanism of selecting a reference velocity for the SSF method and
he associated influence of the reference velocity on the accuracy of
he propagation. Based on this exploration, I show in this paper that
he GS method can inherit the advantage of the SSF method in se-
ecting a more representative reference velocity.

In the next section and Appendix A, I will present SSF and GS
ethods from a perspective of approximations with separation of

ariables. This is followed by an analysis on the influence of the ref-
rence velocity on the accuracy of the propagation for SSF and GS
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S250 Chen
ethods. I then perform some numerical experiments to demon-
trate the theoretical analysis.

SSF AND GS METHODS

Consider the one-way wave operator in frequency-wavenumber
omain

A�x,y;kx,ky;���exp�i� �2

v�x,y�2 � �kx
2�ky

2��z�,

�1�

here � is circular frequency, kx,ky are wavenumbers, �z is the con-
inuation depth, and v�x,y� is the velocity, which is averaged over z
ithin a downward extrapolation interval.
The SSF method approximates the one-way wave operator �equa-

ion 1� as follows �Stoffa et al., 1990�

ASSF�exp�ikz
SSF�z�, �2�

here vr is the reference velocity, and kz
SSF is the approximate verti-

al wavenumber

kz
SSF�

�

v
�

�

vr
���2

vr
2 � �kx

2�ky
2� . �3�

The GS method approximates the one-way wave operator �equa-
ion 1� as follows �Le Rousseau and de Hoop, 2001�

AGSn�exp�ikz
GSn�z�, �4�

here kz
GSn is the approximate vertical wavenumber

kz
GSn�

�

v
�

�

vr
�kz

0�� �
j�1

n

aj	 1

v2 �
1

vr
2
 j

��	�

kz
0
2j�1

�vr
2j�1�, �5�

here kz
0���2

vr
2 � �kx

2�ky
2�, a1�

1
2 , aj� ��1� j�1

1·3¯�2j�3�
j!2 j , j�2.

SF and GS methods belong to approximations with separation of
ariables of the one-way wave operator �equation 1�. For details, see
ppendix A.

SELECTION OF REFERENCE VELOCITIES

In this section, I discuss the issue of the selection of reference ve-
ocities for SSF and GS methods. First, the approximate vertical
avenumbers obtained by SSF and GS methods will be expressed in

erms of propagation angles.
The approximate vertical wavenumber �equation 3� can be further

ritten as

kz
SSF�

�

v
�

�

vr
���2

vr
2 � �kx

2�ky
2�

�
�

v
�1�

v
vr

�
v
vr

�1�
vr

2

v2

v2kT
2

�2 �
�

�

v
�1�

v
vr

�
v
vr

�1�
vr

2

v2 sin2 ��, �6�

here k2 �k2�k2 and � is the propagation angle.
T x y
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Similarly, the approximate vertical wavenumber �equation 5� can
e further formulated as

kz
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here Bj� � 1

�1�
vr

2
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2
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vr

2

v2 sin2 � �2j�1
�1. From

quation 6, we can obtain the normalized vertical wavenumber for
SF:

v
�
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SSF�1�

v
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�
v
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�1�
vr

2

v2 sin2 � . �8�

rom equation 7, we can obtain the normalized vertical wavenumber
or GS:

v
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GSn�1�
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n equation 8, when vr �v, the normalized vertical wavenumber
kz

SSF /� is real-valued for all propagation angles. On the other hand,
hen vr � v, the normalized vertical wavenumber vkz

SSF /� be-
omes complex-valued for propagation angles that are larger than

max�sin�1� v
vr�. We call �max the maximum propagation angle

hen the reference velocity vr is larger than the true velocity v. In
his case, wave propagation at angles beyond �max will become arti-
cial evanescent waves and usually be discarded as follows �Han,
998; Claerbout and Black, 2001�

xp�i��2

vr
2 � �kx

2�ky
2��z�

�
exp�i��2

vr
2 � �kx

2�ky
2��z�, kx
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0, kx
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�2

vr
2 .� .

�10�
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On reference velocities for SSF & GS S251
If we select a reference velocity that is the minimum velocity for
he SSF method, the SSF method is valid for all propagation angles,
ut the velocity perturbation is large, which degrades the accuracy of
he SSF method. On the other hand, if we choose an average velocity
s the reference velocity for the SSF method, the resulting velocity
erturbation decreases and the accuracy of the SSF method im-
roves. Of course, there is a concern with the average reference ve-
ocity: Some velocities are larger than the reference velocity, but
ome velocities are smaller than the reference velocity, and in this
ase there is the issue of maximum propagation angles. In fact, there
s no need to worry about this problem because for a given perturba-
ion, the accuracy angle of the SSF method is smaller than the maxi-

um propagation angle. See Tables 1 and 2 for details. The accuracy
ngle of the SSF method is defined as the angle at which the relative
rror between the normalized approximate vertical wavenumber and
he exact one is less than or equal to 1%:

� vkz
SSF/� ��1�sin2 �

�1�sin2 �
��0.01. �11�

herefore, when artificial evanescent waves associated with propa-
ation beyond the maximum angle are discarded, the accuracy of the
SF method is not affected.
Now we turn our attention to the GS method. In equation 9, when

r �v, the normalized vertical wavenumber vkz
GSn /� is also real-val-

ed for all propagation angles. When vr � v, the normalized vertical
avenumber vkz

GSn /� also becomes complex-valued for propaga-
ion angles beyond the maximum propagation angle and the artificial
vanescent waves occur. The only difference between the SSF and
S method is that, at the maximum propagation angle �max, the nor-
alized vertical wavenumber vkz

GSn /� becomes infinite �a singulari-
y� whereas the normalized vertical wavenumber vkz

SSF /� is still a fi-
ite real number. Therefore, if we discard the waves propagating at
he maximum propagation angle and beyond as follows

able 1. Maximum propagation angles and accuracy angles o

vr�v
v

5% 10% 15%

max�sin�1� v
vr

� 72° 65° 60°

ccuracy angle of SSF 31° 23° 19°

ccuracy angle of
S1

53° 40° 32°

ccuracy angle of
S2

61° 49° 39°

ccuracy angle of
S3

63° 52° 43°

ccuracy angle of
S4

64° 53° 45°
Downloaded 10 Dec 2010 to 222.130.199.241. Redistribution subject to
xp�i��2

vr
2 � �kx

2�ky
2��z�

�
exp�i��2

vr
2 � �kx

2�ky
2��z�, kx

2�ky
2�

�2

vr
2 ,

0, kx
2�ky

2�
�2

vr
2 ,�,

�12�

e can remove the limitation on reference velocities for the GS
ethod.Again, there is a concern with this removal: Will the issue of
aximum propagation angles affect the accuracy of the GS method?
he answer is no because just as with the SSF case, for a given veloc-

ty perturbation, the accuracy angle of the GS method is smaller than
he maximum propagation angle �Tables 1 and 2�. Therefore, we can
se an average velocity as the reference velocity for the GS method
o reduce the velocity perturbation, which can avoid the low accura-
y caused by large velocity perturbations.

For completeness, the accuracy angles for SSF and GS methods
or the case of vr �v are also listed in Tables 3 and 4.

NUMERICAL EXPERIMENTS

In this section, numerical experiments will be performed to dem-
nstrate the analysis of the previous section. For brevity, I only con-
ider the first-order GS method in the following experiments. High-
r-order GS methods can be discussed in the same way.

Setting n�1 in equation 9, one obtains the normalized vertical
avenumber for GS1:

v
�

kz
GS1�1�

v
vr

�
v
vr

�1�
vr

2

v2 sin2 � �
1

2

v
vr
	vr

2

v2 �1
B1,

�13�

and GS when vr � v in terms of
vr�v

v .

20% 25% 30% 35% 40%

56° 53° 50° 47° 45°

17° 15° 14° 13° 12°

26° 21° 18° 16° 14°

32° 26° 22° 18° 15°

36° 30° 24° 19° 16°

38° 31° 26° 20° 16°
f SSF
 SEG license or copyright; see Terms of Use at http://segdl.org/
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here B1�1 /�1�
vr

2

v2 sin2 � �1.
In Figure 1, I show the normalized vertical wavenumbers versus

ropagation angles for SSF and GS1 methods for �vr�v� /v�
10% and �vr�v� /v��10%, respectively. The exact normal-

zed vertical wavenumber is also plotted for comparison. For �vr

v� /v��10%, the curves for SSF and GS1 are above the exact
urve, and the GS1 curve is closer to the exact curve than the SSF
urve because GS1 is more accurate than SSF. For �vr�v� /v

10%, the SSF curve is below the exact curve, whereas the GS1
urve is still above the exact curve. In this case, the maximum propa-
ation angle is 65°. In the vicinity of the maximum propagation an-
le, the error in GS1 increases.

able 2. Maximum propagation angles and accuracy angles o

v�vr

vr
�4.8% �9.1% �13.1%

max�sin�1� v
vr

� 72° 65° 60°

ccuracy angle of
SF

31° 23° 19°

ccuracy angle of
S1

53° 40° 32°

ccuracy angle of
S2

61° 49° 39°

ccuracy angle of
S3

63° 52° 43°

ccuracy angle of
S4

64° 53° 45°

able 3. Accuracy angles of SSF and GS when vr �v in term

vr�v
v

�5% �10% �15%

ccuracy angle of
SF

31° 23° 19°

ccuracy angle of
S1

57° 44° 35°

ccuracy angle of
S2

68° 57° 48°

ccuracy angle of
S3

73° 64° 57°

ccuracy angle of
S4

75° 68° 62°

able 4. Accuracy angles of SSF and GS when vr �v in terms

v�vr

vr
5.3% 11.1% 17.6%

ccuracy angle of SSF 31° 23° 19°

ccuracy angle of GS1 57° 44° 35°

ccuracy angle of GS2 68° 57° 48°

ccuracy angle of GS3 73° 64° 57°

ccuracy angle of GS4 75° 68° 62°
Downloaded 10 Dec 2010 to 222.130.199.241. Redistribution subject to
Figure 2 shows impulse responses for SSF and GS1 in a medium
ith v�3000 m /s. The reference velocity is taken as vr

2700 m /s. The spacings are taken as �x��z�15 m, and the
umbers of horizontal and vertical sampling are nx�nz�256. A
icker wavelet with peak frequency of 35 Hz is placed at �1905 m,
m�. Both impulse responses are inside of the exact curve �red

urve�. As is expected, the GS1 response is closer to the exact curve
han SSF.

Figures 3 and 4 show impulse responses for SSF and GS1 in the
ame medium as in Figure 2, but the reference velocities are taken as

r�3150 and 3300 m /s, respectively. Figure 3 is the result of SSF.
oth responses are outside of the exact curve. With the reference ve-

and GS when vr � v in terms of
v�vr

vr
.

6.7% �20% �23.1% �25.9% �28.6%

6° 53° 50° 47° 45°

7° 15° 14° 13° 12°

6° 21° 18° 16° 14°

2° 26° 22° 18° 15°

6° 30° 24° 19° 16°

8° 31° 26° 20° 16°

�v
v .

20% �25% �30% �35% �40%

17° 15° 14° 13° 12°

29° 24° 21° 19° 17°

41° 34° 29° 25° 22°

50° 43° 37° 31° 27°

56° 50° 43° 37° 32°

vr

vr
.

25% 33.3% 42.9% 53.8% 66.7%

17° 15° 14° 13° 12°

29° 24° 21° 19° 17°

41° 34° 29° 25° 22°

50° 43° 37° 31° 27°

56° 50° 43° 37° 32°
f SSF

�1

5

1

2

3

3

3

s of
vr

�

of
v�
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On reference velocities for SSF & GS S253
ocity increasing, the response is further away from the exact curve.
igure 4 is the result of GS1. In this case, the impulse responses are
till inside of the exact curve, which is consistent with the result in
igure 2.
Now, I consider a laterally variant medium with velocity

v�x,z�� �2700�0.2�x�1905�� m/s. �14�

he model size and sampling as well as the source are the same as the
revious homogeneous medium. For this medium, the exact impulse
esponse curve is a semicircle with a radius of 13,500 sin h�0.2t� m,
nd the center of the semicircle is located at ��1905–13,500�1

cos h�0.2t��� m,0 m�.
Figures 5 and 6 show impulse responses for SSF and GS1 with the
inimum velocity as the reference velocity and the average velocity

s the reference velocity, respectively. The results of average refer-
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igure 1. Normalized vertical wavenumbers versus propagation an-
les for SSF and GS1 methods for velocity errors �vr�v� /v�

10% and �vr�v� /v�10%, respectively.
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igure 2. Impulse responses in a medium with v�3000 m /s and vr

2700 m /s for �a� SSF and �b� GS1. The white dashed curve is the
xact curve.
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nce velocity are closer to the exact curves than that of minimum ref-
rence velocity.

Figure 7 shows the migration results on the Marmousi model
Versteeg and Grau, 1991� for SSF and GS1 with the minimum and
verage velocities as the reference velocities, respectively. The SSF
esult with the minimum reference velocity is very poor, whereas re-
lacement of the minimum reference velocity by the average refer-
nce velocity greatly improves the imaging quality. The GS1 result
ith the minimum reference velocity is much better than the corre-

ponding result for SSF with the minimum reference velocity; how-
ver, compared with the SSF result with the average reference veloc-
ty, the GS1 result with the minimum reference velocity has a better
maging quality in the shallow areas and a worse imaging quality in
he deep areas. Again, by replacing the minimum reference velocity
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igure 3. Impulse responses for SSF in a medium with v
3000 m /s: �a� vr�3150 m /s and �b� vr�3300 m /s.
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he superimposed exact curve �white dashed curve�, and �d� plot b
ith the superimposed exact curve �white dashed curve�.
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S254 Chen
y the average reference velocity, the result of GS1 improves a lot,
specially in the deep areas.

Three kinds of average velocities are available: arithmetic aver-
ge, geometric average, and harmonic average. Specifically, sup-
ose that there are n velocities at a certain depth level vi,i

1,2, . . . ,n, the three kinds of average velocities are

. Arithmetic average:va�
v1�v2� ¯�vn

n
, �15�

. Geometric average:vg��n v1v2¯vn, and �16�

. Harmonic average:vh�
1

s
, where s

�

1

v1
�

1

v2
� ¯�

1

vn

n
. �17�

he quantity s in equation 17 is called the average slowness. There
xists a relation between these three average velocities

vh�vg�va. �18�

The harmonic average is used in obtaining the results in Figure 7.
igure 8 shows the results of SSF with geometric average and arith-
etic average, respectively. One can see that these three average ve-

ocities generate very similar results. Therefore, one can choose any
f these three average velocities in practice.

In the above migrations with the Marmousi model, I use a migra-
ion aperture �rn�a,sn�a�, where rn and sn are horizontal coordi-
ates of the receiver with maximum offset and the shot point for the
th shot data, respectively, and a�100�12.5 m�1250 m. There
re 240 shot data and rn�425�25� �n�1� �m�, sn�3000�25
�n�1� �m�, and n�1,2, . . . ,240. The minimum velocity and av-

rage velocity are taken over �rn�a,sn�a�� �0 m,3000 m� for
ifferent depths 0 m�z�3000 m. As in Han �1998�, one can also
hoose minimum velocity and average velocity over �rn,sn�
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igure 5. Impulse responses for SSF in a laterally variant medium:
a� with the minimum velocity as the reference velocity, and �b� with
he average velocity as the reference velocity.
Downloaded 10 Dec 2010 to 222.130.199.241. Redistribution subject to
�0 m,3000 m�. Figure 9 shows the migration results obtained
ith GS1, where the reference velocities are the minimum velocity

nd average velocity taken over �rn,sn�� �0 m,3000 m�. Compared
ith the corresponding results in Figure 7, the result with the mini-
um reference velocity improves and the result with the average ref-

rence velocity basically remains the same. The improvement is be-
ause the minimum velocity over �rn,sn�� �0 m,3000 m� is a kind
f average velocity over �rn�a,sn�a�� �0 m,3000 m�. To sup-
ress wraparound from the computational boundary, a nonreflecting
oundary condition is used �Cerjan et al., 1985�.
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igure 6. Impulse responses for GS1 in a laterally variant medium:
a� with the minimum velocity as the reference velocity, �b� with the
verage velocity as the reference velocity, �c� plot a with the super-
mposed exact curve �white dashed curve�, and �d� plot b with the su-
erimposed exact curve �white dashed curve�.
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igure 7. Migration results on Marmousi model. �a� SSF with the
inimum velocity as the reference velocity. �b� SSF with the aver-

ge velocity as the reference velocity. �c� GS1 with the minimum ve-
ocity as the reference velocity. �d� GS1 with the average velocity as
he reference velocity.
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CONCLUSIONS

I have compared the selection of reference velocities for the SSF
nd GS methods. When the reference velocity is larger than the true
elocity, both methods have the issue of the maximum propagation
ngle, and the maximum propagation angle is larger than the corre-
ponding accuracy angle of the methods. Therefore, just like the SSF
ethod, one can remove the limitation on the reference velocity of

he GS method if one discards the artificial evanescent waves �the
SF case� plus the wave at the maximum propagation angle �singu-

arity in the GS case� by setting them to be zero. With this removal,
ne can use an average velocity �arithmetic, geometric, or harmonic
verage� as the reference velocity to reduce velocity perturbations
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igure 8. Migration results on the Marmousi model obtained with
SF: �a� with the arithmetic average as the reference velocity and �b�
ith the geometric average as the reference velocity.
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igure 9. Migration results on the Marmousi model obtained with
S1: �a� the reference velocity is the minimum velocity taken over

rn,sn�� �0 m,3000 m� and �b� the reference velocity is the average
elocity taken over �rn,sn�� �0 m,3000 m�.
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or achieving imaging improvement. Migration results on the Mar-
ousi model demonstrate this imaging improvement.
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APPENDIX A

SEPARABLE FORMULATIONS FOR THE
SSF AND GS METHODS

The selection of a reference velocity leads to a separable formu-
ation of the SSF and GS methods, which guarantees the applicabili-
y of FFT to improve computational efficiency. To gain a deep under-
tanding for the separable properties of the SSF and GS methods, I
resent their separable formulations in this appendix.

Based on the one-way operator �equation 1�, the wavefield-con-
inuation formula can be written as

U�z��z,x,y;���F�1�A�x,y;kx,ky;��F�U�z,x,y;����,

�A-1�

here U�z,x,y;�� is the wavefield at depth z, and F and F�1 denote
he two-dimensional forward Fourier transform with respect to x and

y and the inverse Fourier transform with respect to kx and ky, respec-
ively.

The inverse Fourier transform in equation A-1 depends on the
patial variables x and y; therefore, we cannot directly apply FFT al-
orithms.

The separable approximation for the one-way operator �equation
� is

A�x,y;kx,ky;��� �
j�1

m

sj�x,y;��wj�kx,ky;��, �A-2�

here sj�x,y;��, and wj�kx,ky;�� � j�1,2, . . . ,m� are called the sepa-
able base functions in spatial variables x and y and in wavenumber
ariables kx and ky, respectively, and m is referred to as the order of
he separable approximation. The separable approximation is also
alled the approximation with separation of variables.

Using the separable approximation �equation A-2�, equation A-1
ecomes

�z��z,x,y;��

� �
j�1

m

�sj�x,y;��F�1�wj�kx,ky;��F�U�z,x,y;����� .

�A-3�

Using equation A-3, FFT algorithms can be applied directly to
chieve computational efficiency.

Based on equations 2 and 3, the separable approximation formula
or SSF is
 SEG license or copyright; see Terms of Use at http://segdl.org/
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ASSF�x,y;kx,ky;���s1�x,y;��w1�kx,ky;��, �A-4�

here

s1�x,y;���exp�i��
v �

�
vr

��z�

w1�kx,ky;���exp�i��2

vr
2 � �kx

2�ky
2��z�

The construction of the GS algorithm consists of three steps: the
pproximation of the square root in equation 1, the approximation of
he exponential in equation 1, and normalization of the resulting ap-
roximation �Le Rousseau and de Hoop, 2001�. The first-step ap-
roximation of the one-way wave operator �equation 1� is equations
and 5.

The second step of constructing the GS algorithm approximates
he exponential as

AGSn�exp�i��

v
�

�

vr
�kz

0�R��z�
��exp�i��

v
�

�

vr
�kz

0��z��1� iR�z�,

�A-5�

here

R��� j�1
n aj� 1

v2 �
1
vr

2� j�� �

kz
0�2j�1

�vr
2j�1�

Therefore, the separable approximation formula for the GS algo-
ithm is

AGSn�x,y;kx,ky;��� �
j�1

n�1

sj�x,y;��wj�kx,ky;��,

�A-6�

here

s1�x,y;���exp�i��
v �

�
vr

��z�,

w1�kx,ky;���exp�i��2

vr
2 �kx

2�ky
2�z�,

sj�1�x,y;��� i��zaj exp�i��
v �

�
vr��z�� 1

v2 �
1
vr

2� j,

wj�1�kx,ky;���exp�i��2

vr
2 �kx

2�ky
2�z�

���� 1
vr

2 �
kx

2

�2 �
ky

2

�2���2j�1�
�vr

2j�1�,

nd

j�1,2, . . . ,n .

ote that s1�x,y;�� and w1�x,y;�� in the separable approximation
or the GS method are the same as that for the SSF method.

Finally, the third step for the GS algorithm is a normalization op-
ration:
Downloaded 10 Dec 2010 to 222.130.199.241. Redistribution subject to
AGSn�s1�x,y;��w1�kx,ky;��N

��1�

�
j�2

n�1

sj�x,y;��wj�kx,ky;��

s1�x,y;��w1�kx,ky;��
�, �A-7�

here N is a normalization operator defined as

N�1����exp�iI�����1�
R���

1� iI���
��1

��1�
R���

1� iI����, �A-8�

here � is an arbitrary complex number, and R��� and I��� are its
eal and imaginary part, respectively �De Hoop et al., 2000�.

The final nth-order GS algorithm �equation A-7� has two meth-
ds of implementation when applied to the initial wavefield
�z,x,y;��:

U�z��z,x,y;��

�s1�x,y;��F�1�w1�kx,ky;��F�U�z,x,y;����

�N�1�

�
j�2

n�1

sj�x,y�F�1�wj�kx,ky;��F�U�z,x,y;����

s1�x,y;��F�1�w1�kx,ky;��F�U�z,x,y;����
�,

�A-9�

nd

U�z��z,x,y;��

�F�1
w1�kx,ky;��F�s1�x,y;��U�z,x,y;���

�N�1�

�
j�2

n�1

wj�kx,ky;��F�sj�x,y;��U�z,x,y;���

w1�kx,ky;��F�s1�x,y;��U�z,x,y;���
�� .

�A-10�

he two implementations �equations A-9 and A-10� have the same
inematic characteristics �Chen and Du, 2010�. It is more convenient
o use equation A-10 for normalization �Le Rousseau and de Hoop,
001�.
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