
Gondwana Research 16 (2009) 264–271

Contents lists available at ScienceDirect

Gondwana Research

j ourna l homepage: www.e lsev ie r.com/ locate /gr
A Re–Os study of molybdenites from the Lanjiagou Mo deposit of North China Craton
and its geological significance

Chunming Han a,⁎, Wenjiao Xiao a, Guochun Zhao b, Min Sun b, Wenjun Qu c, Andao Du c

a State Key laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
b Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
c National Research Center of Geoanalysis, Beijing, 100037, China
⁎ Corresponding author.
E-mail address: cm-han@mail.igcas.ac.cn (C. Han).

1342-937X/$ – see front matter © 2009 Published by E
doi:10.1016/j.gr.2009.01.001
a b s t r a c t
a r t i c l e i n f o
Article history:
 The Lanjiagou Mo deposit i

Received 15 October 2008
Received in revised form 15 December 2008
Accepted 4 January 2009
Available online 7 January 2009

Keywords:
Re–Os study
Mo deposit
Lanjiagou
North China Craton
s located in the eastern part of the North China Craton. Rhenium and osmium
isotopes in molybdenites from the Lanjiagou porphyry Mo deposit have been used to determine the timing of
mineralization. Molybdenite was analyzed mainly from granite porphyry, which is characterized by moderate
to strong silicification. Rhenium concentrations in molybdenite samples are between 33 and 48 µg/g.
Analysis of eleven molybdenite samples yields an isochron age of 181.6±6.5 Ma (2σ). Based on the
geological history and spatio-temporal distribution of the granitoids, it is proposed that the Mo deposits in
the eastern part of the North China Craton were related to the subduction of the Paleo-Pacific plate during
Jurassic time.

© 2009 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.
1. Introduction
The North China Craton bears the most important molybdenum
metallogenic province in China, which consists of the Yanshan–
Liaoning molybdenum ore belt on the northern margin and the
Eastern Qinling molybdenum ore belt on the southern margin (Huang
et al., 1996). Located on the northernmargin of the North China Craton
(NCC), the Yanshan–Liaoning molybdenum ore belt is one of the
centralized areas of importantmolybdenum deposits, as well as one of
the major molybdenum producers in China. The time and space of
these deposits are associated with intermediate-acid granites. The
molybdenum (copper) deposits are usually distributed along the
endo- or exo-contact zones of granite porphyries, and belong to
porphyry-type (e.g. Lanjiagou), porphyry–skarn-type (e.g. Xiao-
jiayingzi, Dawan and Xiaochigou) and skarn-type (e.g. Yangjiazhangzi
and Shouwangfen) ore deposits (Table 1; Fig. 2).

The Lanjiagou Mo deposit is located in the eastern part of the NCC
(Figs. 1 and 2). Regionally and tectonically, it occurs in the eastern part
of the Mesozoic Yanshan fold belt. It was discovered by the Liaoning
Bureau of Geology and General Corporation of Non-ferrous Metallur-
gic Metals in the 1950s. Presently, the mining exploration is still being
performed by the local government. The reserve of molybdenum
metal in the deposit has been estimated to be more than 216,800 tons
Mo (Huang et al., 1989).

Since the discovery of the Lanjiagou Mo deposit, many scientific
studies have been conducted, especially on the geology and
lsevier B.V. on behalf of Internation
geochemistry of the Mo ores (Ai and Feng, 1985; Ye and Wang,
1985; Luo et al., 1991; Yu, 1992; Dai et al., 2007; Tian, 1999), including
studies on radiogenic isotopic dating and stable isotopes (Huang et al.,
1996; Ai and Feng, 1985), and the ore-forming environments (Huang
et al., 1996; Pei et al., 1998; Mao et al., 2003; Dai et al., 2006; Ge et al.,
2007). However, much of the documentation of the Lanjiagou deposit
has been reported in the Chinese literature, and the international
geological community knows little about this deposit.

In the present study, we carried out Re–Os dating investigations on
molybdenum ores from the Lanjiagou deposits in order to further
constrain the timing of mineralization. In addition, we also discuss the
geodynamic environments and processes that controlled the ore
formation. An understanding of these mineralizing processes and
geodynamic environments has important implications for the Mo
exploration programs in the eastern part of the NCC.

2. Geological setting

The NCC is triangular in shape with an area of approximately
1,500,000 km2, and is bounded by faults and younger orogenic belts
(Fig. 1; Zhao et al., 2001). The Early Paleozoic Qilianshan Orogen and
the Late Paleozoic–Late Mesozoic Tianshan–Inner Mongolia–Daxin-
ganling Orogen bound the NCC to the west and the north, respectively
(Fig. 1; Ren, 1980; Zorin et al., 2001; Zhao et al., 2001), and the
Qinling–Dabie–Sulu ultrahigh-pressure metamorphic belt separates
the NCC from the Yangtze Craton to the south and east (Fig. 1).
Recently, many new results from investigations of magmatism,
metamorphism, structure and tectonics, geochronology, and major,
trace, and isotope geochemistry on rocks related to the NCC have been
al Association for Gondwana Research.
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Table 1
Summary of geological and mineralogical features of molybdenum and copper deposits in the Yanshan–Liaoning metallogenic belt.

Deposits Genetic
types

Economic
metals

Host rocks Intrusive
rocks

Wall–rock alteration Reserve,
grade

Orebody size Sulfide
assemblages

References

Yangjiazhangzi Skarn Mo Middle-Upper
Cambrian-Ordovi:
limestone,
shale and skarn

Porphyritic granite,
granite–porphyry

Silicification,
pyritization,
chloritization,
carbonization

26.2×104 Mo
Mo: 0.14%

Length: 300–800 m Molybdenite,
pyrite,
Chalcopyrite,
galena,
zinc blende

Huang
et al., 1989Thickness: 3–10 m

Depth: 200–250 m

Lanjiagou Porphyry Mo Sinian: Dolomitic
limestone,
chert–dolomitic
limestone;
Cretaceous:pyroclastic
rock

Porphyritic granite k-feldspar alteration,
greisenization,
silicification,
pyritization,
chloritization,
carbonization

21.68×104 Mo
Mo: 0.13%

Length: 360–1280 m Molybdenite,
pyrite,
chalcopyrite,
galena,
magnetite,
argentite

Huang
et al., 1989Thickness: 13–31 m

Depth: 200–550 m

Xiaojiayingzi Porphyry–
skarn

Mo–Fe Sinian: Dolomitic
limestone,
chert–dolomitic
limestone

Porphyritic diorite Skarnization,
k-feldspar alteration,
pyritization,
carbonization,
sericitization,
chloritization

10.5×104 Mo
Mo: 0.28%;
296.3×104 Fe
Fe: 33.4%

Length: 150–800 m Molybdenite,
pyrite,
magnetite,
chalcopyrite,
galena,
zinc blende

Dai et al.,
2006Thickness: 7–21 m

Depth: 150–600 m

Dazhuangke Porphyry Mo Sinian: Carbonate rock Kjelsasite K-feldspar alteration,
silicification,
pyritization,
sericitization,
chloritization

1.04×104 Mo
Mo: 0.08%;

Length: 350–1000 m Molybdenite,
pyrite,
zinc blende,
ilmenite,
chalcopyrite,

Dai et al.,
2006Thickness: 20–95 m

Depth: 350–500 m

Dawan Porphyry–
skarn

Mo–Cu–
Zn–Ag

Sinian: Dolomitic
limestone

Rhyolite porphyry K-feldspar alteration,
silicification,
skarnization,
Serpentinization,
carbonization

25.9×104 Mo
Mo: 0.12%

Length: n×1000 m Molybdenite,
pyrite,
pyrrhotite,
zinc blende,
galena,
chalcopyrite

Dai et al.,
2006Thickness: n×10 m

Depth: n×100 m

Xiaosigou Porphyry–
skarn

Mo–Cu Sinian: Dolomitic
limestone,
chert–dolomitic
limestone

Granodiorite–
porphyry

K-feldspar alteration,
pyritization,
skarnization,
Serpentinization,
sericitization

5.98×104 Mo
Mo: 0.09%;
1.85×104 Cu
Cu: 0.74%

Length: 2000 m Chalcopyrite,
Chalcocite,
pyrite,
molybdenite,
bornite,
tetrahedrite

Dai et al.,
2006Thickness: 30–100 m

Depth: 300–500 m

Shouwangfen Skarn Cu–Mo–
Fe

Sinian: Dolomite,
chert–dolomiteic

Porphyritic–
granodiorite

Skarnization,
chloritization,
Sericitization,
silicification,
serpentinization

0.22×104 Mo
Mo: 0.31%;
1.62×104 Cu
Cu: 0.72%

Length: 200–500 m Chalcopyrite,
bornite,
molybdenite,
magnetite,
zinc blende,
galena

Dai et al.,
2006Depth: 150–300 m
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obtained (Hou et al., 2008a,b; Kusky et al., 2007; Peng et al., 2007;
Santosh et al., 2007a,b; Zhai et al., 2007; Su et al., 2008).

The basement of the NCC has been divided into the Eastern and
Western Blocks separated by the Paleoproterozoic Trans-North China
Orogen (Fig. 1; Zhao et al., 2001). The Eastern Block consists of the
Archean basement and the Paleoproterozoic Jiao-Liao-Ji Belt (Fig. 1;
Zhao et al., 2005), and the Western Block can be subdivided into the
Ordos and Yinshan Blocks separated by the Paleoproterozoic Khonda-
lite Belt (Fig. 1; Zhao et al., 2005). There is a broad consensus that both
the Khondalite Belt in the Western Block and the Trans-North China
Orogen in the central part of the craton represent two Paleoproter-
ozoic continent–continent collisional belts (Zhao et al., 2001, Wilde
et al., 2002; Kröner et al., 2005, 2006). The Paleoproterozoic
Khondalite Belt is considered to have formed by the amalgamation
of the Yinshan Block in the north and the Ordos Block in the south to
form the Western Block at 1.95–1.92 Ga (Zhao et al., 2005; Wan et al.,
2006; Santosh et al., 2007a,b), and subsequently the Western Block
collided with the Eastern Block along the Trans-North China Orogen to
form the coherent basement of the NCC at ~1.85 Ga (Zhao et al., 2000,
2001, 2005; Guo et al., 2005; Liu et al., 2006).

The Early Archean basement rocks are only reported from the
Eastern Block, represented by 3.5–3.85 Ga detrital zircons and
fuchsite-bearing quartzites and ~3.5 Ga amphibolites in the Caoz-
huang area of the Eastern Hebei, and the 3.3–3.8 Ga granitoids and
metasedimentary rocks in Anshan area (Liu et al., 1992; Song et al.,
1996). Middle Archean basement rocks also mainly crop out in the
Eastern Block, ranging in age from 3.5 to 3.0 Ga (Huang et al., 1986;
Jahn et al., 1987; Kröner et al., 1988; Wu et al., 1991; Shen and Qian,
1995), and occurring as enclaves, boudins and sheets within the 2.6–
2.5 Ga trondhjemite–tonalite–granodiorite (TTG) and 2.5 Ga syn-
tectonic granites which make up much of the NCC (Wu et al., 1991;
Kröner et al., 1988; Zhao et al., 2001). The late Archean basement rocks
are widespread in both the Eastern Block and the Yinshan Block and
consist predominantly of 2.8–2.5 Ga tonalitic–trondhjemitic–grano-
dioritic (TTG) gneisses, ultramafic to mafic igneous intrusions, dykes
andminor amounts of supracrustal rocks. Of these rocks, TTG gneisses
make up 70% of the total exposure of the Neoarchean basement (Wu
et al., 1991; Zhao et al., 1998), and the supracrustal rocks comprise
sedimentary and bimodal volcanic rocks (Zhao et al., 1998). All these
rocks were deformed and metamorphosed to between greenschist
and granulite facies at 2.48–2.50 Ga (Jahn et al., 1987; Wu et al., 1991;
Zhao et al., 1998; Ge et al., 2003).

Since the final cratonization at ~1.85 Ga (Zhao et al., 2001; Kusky
et al., 2007), the NCC was subsequently covered by thick sequences of
Meso-Neoproterozoic and Paleozoic sediments(Lu et al., 2008), with
intrusions of diamondiferous kimberlites in Shandong and Liaoning
Provinces during middle Ordovician time. The eastern part of the NCC
became tectonically active again during Late Mesozoic time, with
large-scale magmatism, basin development, ductile deformation and
movement on large-scale faults which took place from the Late
Jurassic to Early Cretaceous (Yang et al., 2003). In the Cenozoic, alkali
basalts (many containing xenoliths) and minor tholeiitic basalts



Fig. 1. Tectonic subdivision of the North China Craton (after Zhao et al., 2005). Fig. 2 is outlined.

Fig. 2. Schematic geological map of the Yanshan–Liaoning molybdenum metallogenic belt on the northern margin of the North China platform (modified from Huang et al., 1996).
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Fig. 3. Geological map of the Lanjiagou Mo deposit (modified from Dai et al., 2007).

267C. Han et al. / Gondwana Research 16 (2009) 264–271
erupted at several locations in the NCC (Basu et al., 1991; Tatsumoto et
al., 1992).

The occurrence of diamondiferous kimberlites in Shandong and
Liaoning Provinces suggests the presence of a thick and cold lithospheric
root (ca. 200 km) of the NCC at least as late as Middle Ordovician time
(Zhou et al., 1991, 1994; Menzies et al., 1993; Griffin et al., 1998).
However, constraints from xenoliths in the Cenozoic basalts indicate
that the NCC is nowunderlain by a hot lithosphere varying between 120
and 50 km thick (Ma et al., 1984), which is consistent with the available
seismic and surface heatflowdata. Therefore, it is evident that therewas
strong lithospheric thinning during Phanerozoic time, mostly in the
Mesozoic and Cenozoic (Menzies et al., 1993; Menzies and Xu, 1998;
Griffin et al., 1998), which is confirmed by the recent Os isotope studies
of Gao et al. (2002) and Wu et al. (2003).

3. Lanjiagou Mo (copper) deposit

The Lanjiagou intrusion is composed of coarse-grained granite
and fine-grained granite, the largest of which occupies a surface
outcrop of ~20 km2 (Fig. 3). Viewed from the surface outcrop, the
intrusion is mostly irregular in shape, but viewed from the vertical
section, the intrusion occurs as veins of larger bodies. The coarse-
grained granite generally contains 40–45% orthoclase, 15–20%
plagioclase, 30–33% quartz, and 3–5% biotite, with minor amounts
of calcite, muscovite and sericite. The fine-grained granite generally
contains 40–45% orthoclase, 15–20% plagioclase, 28–35% quartz,
and 1–3% biotite, with minor amounts of calcite, muscovite and
epidote. Orthoclase crystals range from 0.36 to 3.5 mm in size.
Geochronology of coarse-grained granite ranges between 178 and
186 Ma K–Ar method, and the fine-grained granite yields a Rb–Sr
whole-rock isochron age of 154±14 Ma.

The Lanjiagou deposit can be further subdivided into the upper
Lanjiagou, Middle Lanjiagou, Lower Lanjiagou, Xiaomagou, Yuan-
baoshan and Xishan districts. Totally 101 mineralized bodies have
been identified, and they are distributed in the middle segment of the
fine-grained granite and the contact zone between the coarse-grained
and fine-grained granites. Individual ore bodies vary from 76 m to
1288 m in length and 3.1 m to 31.8 m in thickness. In the dipping
direction, the explored ore bodies extend over 400 m below the
surface. The main ore bodies trend in NW and NS with a dip angle
about 45°. The size of molybdenite ranges from 0.01 mm to 0.15 mm.
The ores are characterized by euhedral and subhedra textures, veinlet-
disseminated and brecciated structures. Principal metallic minerals
are molybdenite and pyrite as well as minor quantities of zinc blende,
chalcopyrite, galena, magnetite and electrum. The gangue minerals
include mainly orthoclase, plagioclase and quartz, with lesser
amounts of calcite, muscovite and chlorite. Wall rocks alteration is
marked by silicification, sericitization, carbonatization, chloritization,
potassic alteration and greisenization (Luo et al., 1991).

According to mineral assemblages and crosscutting relationships of
the ore veins, five mineralization stages can be identified (Fig. 4). The
first mineralization stage (I) is characterized by gas–liquid metasoma-
tism, accompanied by potassium feldspar, quartz and muscovite. The
second stage (II) is characterized mainly by phyllic alteration, forming
the quartz+sericite+magnetite+pyrite assemblage that occurs as
veins. The third stage (III, main mineralization stage) is represented by
the formation of veins containing quartz+molybdenite+pyrite
+sphalerite. The fourth stage (IV) is marked by the formation of the



Fig. 4. Paragenesis sequence of minerals of the Lanjiagou Mo deposit (modified from
Luo et al., 1991).

Fig. 5. Re–Os ages for molybdenite from the Lanjiagou porphyry molybdenum deposit
in the eastern NCC.
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quartz+molybdenite+pyrite+sphalerite assemblage that occurs as
veins and disseminated by barren calcite–quartz veins. The fifth stage
(V) is characterized by the presence of carbonate(calcite)+chlorite
+minor sulfides (Luo et al., 1991).

4. Sampling and analytical methods

We selected 11 samples from the Lanjiagou deposit for Re–Os
dating (Fig. 3), all of which were collected from fresh open-pit mining
faces. Sampling locations are marked in Fig. 4. Gravitational and
magnetical separation was applied and then handpicked under a
binocular microscope (purityN99%). The molybdenite in the samples
is fine grained (b0.1 mm), thus avoiding the decoupling of Re and Os
within large molybdenite grains (Stein et al., 2003; Selby and Creaser,
2004).

Re–Os isotopic analyses were performed at the National Research
Center of Geoanalysis, Chinese Academy of Geosciences. The details of
the chemical procedure have been described by Du et al. (1995, 2001),
Shirey andWalker (1995), Stein et al. (1998) and Markey et al. (1998)
and are briefly summarized below.

Enriched 190Os and enriched 185Re were obtained from the Oak
Ridge National Laboratory, USA. A Carius tube (a thick-walled
borosilicate glass ampoule) digestion was used. The weighed sample
was loaded in the Carius tube through a thin neck long funnel. The
mixed 190Os and 185Re spike solutions and 2 ml of 12 M HCl. and 6 ml
of 15 M HNO3 were loaded while the bottom part of the tube was
frozen at −80 to −50 °C in an ethanol–liquid nitrogen slush; the top
was sealed using an oxygen–propane torch. The tube was then placed
in a stainless-steel jacket and heated for 24 h at 230 °C. Upon cooling,
the bottom part of the tube was kept frozen, the neck of the tube was
Table 2
Re–Os isotopic data for molybdenite from the Lanjiagou Mo deposit, eastern China.

No. samples Weight (g) Re (μg/g) 187Re (μg/

Measured 2σ Measured

LJG-1 0.10654 36.07 0.33 22.67
LJG-2 0.11245 45.83 0.41 28.81
LJG-3 0.10013 33.29 0.37 20.93
LJG-4 0.10083 40.53 0.36 25.47
LJG-5 0.10143 33.96 0.26 21.35
LJG-6 0.10028 37.49 0.34 23.56
LJG-7 0.10041 35.59 0.36 22.37
LJG-8 0.10012 36.25 0.39 22.78
LJG-9 0.10048 47.85 0.50 30.08
LJG-10 0.02396 35.83 0.29 22.52
LJG-11 0.02368 35.05 0.31 22.03

Decay constant: λ (187Re)=1.666×10−11/year (Smoliar et al., 1996). The uncertainty in ea
constant of 187Re, uncertainty in isotope ratio measurement, and spike calibration.
broken, and the contents of the tube were poured into a distillation
flask and the residue was washed out with 40 ml of water.

Osmium was distilled at 105–110 °C for 50 min and trapped in
10 ml of water. The residual Re-bearing solutionwas saved in a 150 ml
Teflon beaker for Re separation. The water trap solution was used for
ICP-MS (TJA X-series) determination of the Os isotope ratio.

The Re-bearing solution was evaporated to dryness, and 1 ml of
water was added twicewith heating to near-dryness in between 10ml
of 20% NaOH was added to the residue followed by Re extraction with
10 ml of acetone in a 120ml Teflon separation funnel. Thewater phase
was then discarded and the acetone phase washed with 2 ml of 20%
NaOH. The acetone phase was transferred to a 120 ml Teflon beaker
that contained 2 ml of water. After evaporation to dryness, the Re was
picked up in 1ml of water that was used for the ICP-MS determination
of the Re isotope ratio. Cation-exchange resinwas used to remove Na if
the salinity of the Re-bearing solution was more than 1 mg/ml (Du
et al., 2004).

The ICP-MS measurement condition is below: the instrument used
for this analysis was a TJA PQ ExCELL ICP mass spectrometer. The
instrument was optimized to: N5×104 cps for 1 ng ml−1 115In and
N5×104 cps for 1 ng ml−1 238U. The operating conditions are that the
data acquisition: peak-jumping mode, 3 points/u; dwell time:15 ms/
point; number of scan: 200 for 5 ppb of Re solution, the reproducibility
by ICP-MS to be 0.3% (RSD, 2S, n=5); by using water as an absorbent
for OsO4, the sensitivity of Os by ICP-MS increases a lot. For 0.2 ppb of
Os solution, the reproducibility is 0.3% (RSD, 2S, n=5).

If a minor 190Os signal was observed when measuring Re, the 187Re
signal was appropriately corrected for 187Os using the 187Os/190Os
ratio of the spiked Os solution. Conversely, if a minor 185Re signal was
g) 187Os (ng/g) Model age (Ma)

2σ Measured 2σ Measured 2σ

0.21 69.29 0.53 183.2 2.6
0.26 88.06 0.67 183.2 2.6
0.23 64.10 0.53 183.6 2.9
0.23 77.66 0.67 182.7 2.7
0.17 65.16 0.52 182.9 2.5
0.21 71.93 0.56 182.9 2.6
0.23 68.13 0.54 182.5 2.7
0.24 69.29 0.58 182.3 2.9
0.31 91.62 0.88 182.6 2.9
0.18 69.28 0.52 184.3 2.5
0.20 67.53 0.52 183.7 2.6

ch individual age determination was about 1.5% including the uncertainty of the decay



Fig. 6. Re–Os isochron plot for molybdenite samples from the Lanjiagou Mo deposit,
eastern NCC.
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observed while analyzing the Os-bearing, 187Os was appropriately
corrected for 187Re using the measured 185Re/187Re of the spiked
sample. The corrections were generally minor and constituted no
more than 0.1% of the isotope signal. The maximum correction
percentage that we used is less than 1%.

The mass fractionation can be corrected using an interlaboratory
isotope reference standard. Using the λ238U value of Jaffey et al.
(1971) and λ235 value of Schoene et al. (2006), a value for λ187Re of
1.6689±0.0031×10−11 a−1 is determined. These values are nomin-
ally higher (ca. 0.1% and ca. 0.2%) than the value determined by
Fig. 7. (A) Time span of mineralization (diamonds) ages for the Yanshan–Liaoning base
metal porphyry–skarn deposits. (B) Histogram of Yanshan–Liaoning magmatism
(number of age determinations) for eastern NCC, with intervals of base metal
porphyry–skarn deposits indicated by crosshatched bands. Data are from Huang et al.
(1996) and this study.
Smoliar et al. (1996), but within calculated uncertainty. So, we still
use the λ187Re 1.666±0.005×10−11 a−1 determined by Smoliar et
al. (1996).

Average blanks for the total Carius tube procedure as described
abovewere ca.10 pg Re and ca. 0.1 pg Os. 187Oswas not detected. Three
reference materials were used to inspect the analytical results.

The uncertainty in each individual age determination was about
1.4% including the uncertainty of the decay constant of 187Re,
uncertainty in isotope ratio measurement, and spike calibrations.
The decay constant used for 187Re of 1.666×10−11 a−1 has an absolute
uncertainty of ±0.017 (1.0%) (Smoliar et al., 1996).

5. Results

Results of molybdenite Re–Os dating are listed in Table 2. The
concentrations of Re and 187Os range from 33.293 to 47.852 ppm and
64.103 to 91.617 ppb, respectively. Eleven samples give a Re–Os model
age of 182.3–184.3 Ma and aweightedmean age of (183.11±0.79) Ma
(Fig. 5). The data, processed using the ISOPLOT/Ex program (Ludwig,
2004), yielded an isochron age of (181.6±6.5)Ma, withMSWD=0.31
and an initial 187Os of 0.6±2.5 ppb (Fig. 6). The nearly identical model
age and isochron age suggest that the analytical results are reliable.

6. Intradeposit relations and regional timing of mineralization

Mo–Cu ore deposits in the eastern part of the NCC are mainly
distributed in the northern Hebei–West Liaoning region. These deposits
are restricted to two narrow intervals: ~190Ma to 165Ma and ~150Ma
to 130 Ma years ago (Fig. 7; Table 3). These intervals are irrespective of
time of inception, or ore deposit size. In the Western Liao-Ning are,
porphyry–skarn mineralization formed during from 165 Ma to 190 Ma.

Almost all porphyry-style deposits described in the literature are
Phanerozoic and their formation is linked to magmatic activity at
active plate margins (Titley and Beane,1981). They can be divided into
twomain types: porphyry Cu–Mo and porphyry Cu–Au±Mo deposits
(Sillitoe, 1997). The first type is generally found in continental margin
arcs, like the Andean belt, dominated by calc-alkaline intrusions. The
second type is typical of continental margins or island arc terranes,
such as those in the southwest Pacific regionwhere calc-alkaline rocks
or high-K, calc-alkaline rocks prevail (Sillitoe, 1997).

The eastern NCC became an active continental margin before
Jurassic (Zhou and Li, 2000; Li and Li, 2007). Its geodynamic evolution
was closely associated with the evolution of an ancient Pacific plate.
From the Late Jurassic to Cretaceous, it was proposed that this margin
was related to the subduction of the Pacific plate (Zhou and Li, 2000;
Table 3
Available geochronological data for ore deposits in East China.

Name of
deposit

Dated minerals/
rocks

Dating method Age (Ma) Data sources

Xiaojiayingzi Molybdenite Re–Os isochron 165.5±4.6 Dai et al. (2007)
q Molybdenite Re–Os isochron 177±5 Huang et al. (1996)
Lanjiagou Molybdenite Re–Os isochron 181.6±6.5 Huang et al. (1996)
q Muscovite K–Ar 178–186.3 Tian (1999)
Yangjiazhangzi Molybdenite Re–Os model 191±6 Huang et al. (1996)
q Molybdenite Re–Os model 187±2 Huang et al. (1996)
q Muscovite K–Ar 188.8 Tian (1999)
q Adamellite SHRIMP 188±2 Wu et al. (2006)
Xiaoshigou Molybdenite Re–Os model 134±3 Huang et al. (1996)
q Gabbro-diabase K–Ar 188.8 Tian (1999)
Shouwangfeng Molybdenite Re–Os model 148±4 Huang et al. (1996)
Dawan Molybdenite Re–Os model 144.4±7.4 Huang et al. (1996)
Dazhuangke Molybdenite Re–Os model 147.1±6.68 Huang et al. (1996)
q Molybdenite Re–Os model 144.7

±10.7
Huang et al. (1996)

q Molybdenite Re–Os model 146.4±5.9 Huang et al. (1996)
Sandaozhuang Molybdenite Re–Os model 144.5±2.2 Mao et al. (2006)
q Molybdenite Re–Os model 145.0±2.2 Mao et al. (2006)
q Molybdenite Re–Os model 145.4±2.0 Mao et al. (2006)
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Zhu et al., 2005; Zhou et al., 2006) in the south, concurrent with
oblique subduction of the Izanagi plate in the north (Maruyama et al.,
1997). With regard to regional timing mineralization, some clues to
understanding the processes involved are given by observation that
basemetal porphyries are spatially and temporally associatedwith the
subduction of oceanic lithosphere (Sawkins, 1990).Upon subduction,
the oceanic lithosphere undergoes dehydration and partial melting.
The partial melts and volatiles rise and interact with overlying
continental lithosphere and promote partial melting in the lower
crust. Some of the magma produced by the interaction ascends higher
into the upper crust, forming the volcanic rock if it breaches the surface
or an intrusion if it cools beneath the surface. In Jurassic times,
magmatism associatedwith Izanagi plate is ubiquitous in the east NCC.

Portions of these mixed magmas reached the upper crust as flows
or intrusions. The lower crust underwent further melting as new
volatiles or partial melting rose from the mantle in response to the
subducting Izanagi plate. As remelting of the residues continued in the
lower crust, some components accumulated that are crucial for the
formation of base porphyry–skarn deposits. Eventually a magma
evolved that contained these components (metals as well as sulfur,
water, or both) in sufficient amounts that, upon their emplacement
into the upper crust, a base metal porphyry deposit formed. This
critical abundance level was achieved in the West Liaoning crust
~190 Ma to 165 Ma years ago and in the North Hebei Crust ~150 Ma to
130 Ma years ago. Magmatism of similar age and duration is common
the two Precambrian basement domains, but base metal porphyry
mineralization is restricted to two different intervals specific to those
domains. The processes leading to the regional timing of mineraliza-
tion were probably not instantaneous but evolutionary, creating
windows of time which magmas that reached the upper crust would
contain the components necessary for the formation of base metal
porphyry–skarn deposit.

7. Conclusions

(1) Eleven molybdenites yielded an isochron age of 181.6±6.5 Ma
(2σ) with an initial 187Os of 0.6±2.5 (MSWD=0.31), model
ages for individual analyses range from 182–184 Ma;

(2) Combined with the regional geological history, the evolution of
the porphyry Mo deposit in the Lanjiagou area and associated
Mo mineralization during Mesozoic time were closely related
to the subduction of the Pacific plate.
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