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Steepest descent integration: A novel method for computing
wavefields radiated from borehole sources

Yihe Xu', Baoshan Wang', and Tao Xu?

ABSTRACT

Borehole sources, including chemical explosives, air gun,
water gun, and piezoelectric transducers in the borehole, gener-
ate seismic waves inside and outside the borehole. Modeling the
wavefield is of key importance in acoustic logging, crosshole
tomography, mining geophysics, and deep sounding seismic
for interpretation of amplitude information of real data and
prediction of energy-radiation patterns. Classic methods for
modeling the wavefield inside a borehole, such as real-axis
integration, are challenged by highly oscillatory integrals en-
countered when modeling the wavefield outside the borehole.
We have developed a novel method, called steepest descent in-
tegration (SDI), which evaluates the oscillatory wavenumber

integration by numerically integrating along the steepest descent
path. The oscillation along the new integration path is signifi-
cantly reduced. The contributions of poles and branch cuts are
added if they are located between the steepest descent path and
the real axis. The SDI is applicable to arbitrary frequency and
source-receiver distance. Comparison with real-axis integration
shows that the method can compute highly oscillatory integrals
with better efficiency and accuracy. In addition, the SDI is more
numerically robust because it generates no spurious arrivals,
which are evident in the real-axis integration. Analysis of
numerical examples at different source-receiver distance shows
that SDI is more efficient when computing far-field seismo-
grams. This SDI can also be used to compute highly oscillatory
integral in other wave-propagation problems.

INTRODUCTION

Active source seismology is of extreme importance in identifying
and locating hydrocarbon reservoirs and obtaining high-resolution
images of the crust. The most common source model in active
source seismology is the point-source model. However, numerous
studies have proposed several new source models for better under-
standing of unusual arrivals and their amplitude information.
Acoustic logging and crosshole tomography often enclose a point
source with a fluid-filled borehole (Tsang and Rader, 1979; Kurk-
jian and Chang, 1986; Chen et al., 2014; Zheng et al., 2015),
whereas deep-sounding seismic or mining geophysics studies re-
place the point-source model by stresses acting on a blast-hole wall
(Heelan, 1953; Blair, 2007, 2010). The common modification of the
new source models is the addition of a cylindrical hole around
the sources, which significantly changes the radiation pattern and

generates additional waves. They are therefore called downhole
seismic sources or downhole sources.

In wavefield modeling of downhole seismic source problems,
semianalytical methods have played an important role because of
the ease of handling surface waves along the borehole wall and
the accurate description of the effect of cylindrical boundaries on
wavefields. Basically, a semianalytical method derives analytical
solutions in the frequency-wavenumber domain and then trans-
forms it back to the time-space domain using numerical methods.
Although analytical solutions of borehole sources have been ob-
tained for the empty borehole (Heelan, 1953) and fluid-filled bore-
hole (Lee and Balch, 1982) in an isotropic medium (Tsang and
Rader, 1979), transversely isotropic medium (He and Hu, 2009),
porous medium (Rosenbaum, 1974), cracked porous medium (Tang
et al., 2012), and for seismoelectric effects (Zheng et al., 2015),
numerical methods for transforming analytical solutions back have

Manuscript received by the Editor 26 April 2017; revised manuscript received 27 November 2017; published ahead of production 24 March 2018; published

online 8 June 2018.

'Key Laboratory of Seismic Observation and Geophysical Imaging, Institute of Geophysics, China Earthquake Administration, Beijing 100081, China.

E-mail: xuyihe@cea-igp.ac.cn; wangbs@cea-igp.ac.cn.

ZState Key Laboratory of Lithospheric Evolution, Insitute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029; and CAS Center for
Excellence in Tibetan Plateau Earth Sciences, Beijing 100049, China. E-mail: xutao@mail.iggcas.ac.cn.

© 2018 Society of Exploration Geophysicists. All rights reserved.



D152 Xu et al.

received less attention, especially for the propagation of elastic
waves outside the borehole.

Numerical methods commonly used for computing the wavefield
excited by borehole sources are real-axis integration (Tsang and
Rader, 1979; Zheng et al., 2015), the discrete wavenumber method
(Bouchon and Aki, 1977; Cheng and Toksoz, 1981), and branch-cut
integration (Kurkjian, 1985; He and Hu, 2009; Chen et al., 2014).
They all face challenges when computing far-field seismograms out-
side the borehole because of highly oscillatory integrals in wavenum-
ber integration. The first two methods use sampling points on the real
axis of the complex wavenumber plane to yield complete waveforms.
The real-axis integration explicitly discretizes the wavenumber inte-
gral (Tubman et al., 1984; Zheng et al., 2015); whereas the discrete
wavenumber method converts the wavenumber integral into summa-
tion by introducing evenly spaced virtual sources (White and Zech-
man, 1968; Bouchon and Aki, 1977). The integrand behaves like
exp(iCk) on the real axis, where k is the wavenumber and C is a
constant proportional to the source-receiver distance. Therefore,
the integrand would become highly oscillatory when the source-
receiver distance is large, reducing the accuracy of the numerical in-
tegration (Chen and Zhang, 2001). One possible solution is dense
sampling. Yet, the rate of sampling must be carefully chosen because
of the trade-off between efficiency and spurious signals caused by
inadequate sampling (Bouchon, 2003).

The branch-cut integration provides an oscillation-free way to
compute the wavefield when the receiver is located inside the bore-
hole (Kurkjian, 1985; He and Hu, 2009; Chen et al., 2014). It de-
forms the integration path from the real axis to the branch cuts,
which are nearly identical to the steepest descent path in the case
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Figure 1. Illustration of downhole sources (modified after Xu et al.,
2015). (a) Source geometry. The stress is axisymmetrically applied
on the borehole wall with the radius of a. The receiver is located at
point (7, z). Cylindrical coordinates are used for concise description
of the problem. (b) Three basic types of downhole seismic sources.

of acoustic logging. The integrand behaves as exp(—X?), where X is
a real number varying from —oo to +oo along the path. Hence, it is
an efficient method. However, when the receiver moves outside the
borehole, the integrand will also become highly oscillatory again
because the steepest descent path is no longer coincident with
the branch cut.

Here, we propose a new numerical integration method by chang-
ing the integration path to the steepest descent path, which keeps the
efficiency and flexibility of the branch-cut integration for compu-
tation of the far-field wavefield outside the borehole. Similar ideas
have been commonly used in many fields associated with the evalu-
ation of highly oscillatory integrals (Aki and Richards, 2002), often
referred to as the method of steepest descent or the steepest descent
method (SDM). The basic SDM approximates the steepest descent
path with a single straight line and the integrand with its Taylor
approximation. Despite that SDM has evolved (Khanh, 1995; L6-
pez et al., 2009), it still uses the value of the integrand and/or its
derivatives on several special points (i.e., saddle points) to approxi-
mate the whole integral. It is only accurate under certain conditions,
such as in the far-field or at a high frequency. In our method, we use
no approximations. The integrand is numerically integrated along
the steepest descent path (Huybrechs and Vandewalle, 2006; Xu
et al. 2015). Therefore, the method is more accurate than SDM
and is applicable to near- and far-field cases. It is referred to as
steepest descent integration (SDI) in this paper.

Although SDI is efficient and accurate, it has drawn little attention.
There may be two reasons. On one hand, the classic SDM already has
favorable accuracy in evaluating the far-field wavefield. On the other
hand, implementation of SDI should deal with the tricky multivalued
function around the saddle points (Huybrechs and Vandewalle,
2006). Recent studies show that asymptotic solutions of displace-
ments derived by SDM are only valid in limited cases (Blair, 2007;
Xu et al., 2015). A numerical solution is demanded for better pre-
diction of wavefields, especially for the amplitude. In this paper, we
solve the multivalued problem by considering Sommerfeld radiation
condition and the analyticity of complex displacement functions. A
comparison of the accuracy and efficiency between the SDI and the
real-axis integration is also presented.

STEEPEST DESCENT INTEGRATION

Borehole source problem and its analytical solution
in the frequency-wavenumber domain

Consider an empty borehole of radius a and infinite length em-
bedded in an isotropic linear elastic medium. Borehole sources are
represented by stresses on the borehole wall (Figure 1). The three
basic types of borehole sources are radial, axial, and torsional
sources. Without losing generality, we consider radial sources in
this study. In a cylindrical coordinate system, an axisymmetric
radial borehole sources can be written as
=6(2)G (1), =0pl=e=0. (1)

Orr | r=a Or; | r=a

where 6,,, 6,9, 0, are the stresses applied on the borehole wall, 5(z)
is the Dirac delta function, and G(¢) is the source-time function. The
displacements in the frequency-wavenumber domain can be ob-
tained analytically (Heelan, 1953; Meredith, 1990; see Appendix A
for a detailed derivation):
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where U,, U, are the radial and vertical component of displace-
ments in the frequency- wavenumber domain; r and z are the posi-
tion of the receiver; k and k are the radial wavenumber
associated with the P- and S-waves; p, 4, u are the density and Lamé
parameters of the elastic medium; w is the frequency; G( ) is the
Fourier transform of the source time function G(t); and Hn ") is the
Hankel function. The values of k(rc), kﬁ”, and D are given by
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where ¢(©*) is the velocity of the P- and S-waves. Then, their coun-
terparts in the time-space domain are calculated via 2D numerical
integration over the wavenumber and frequency

(Meredith, 1990; Blair, 2007) |

by exp(i (k(r”) r + k.z)). Consequently, it is oscillatory along the real
axis and becomes highly oscillatory when the source-receiver distance
is large (Figure 2). Hence, the sampling rate of the real axis method
and the discrete wavenumber method positively correlates to the
source-receiver distance, which greatly reduces their efficiency in
far-field cases.

Deforming the integration path to the steepest descent path can re-
move the oscillation (Figure 3). Each part of U, _(r, . k,) exp(ik,z)
can be written as a product of the oscillatory part exp(f(k,)) and the
smooth part F(k,):

U, (r.o.k;) exp(ik.z) = F(k.) exp(f ) (k.))

+ F (k) exp(f©)(k.)),
FE(k,) = ik r + k.2). (7)
The steepest descent path is then obtained by keeping the imagi-

nary part of the exponential term f(k,) constant along the whole
path (Aki and Richards, 2002):

f(kz) = f(kzs) - Xz’ (8

where X is the arbitrary real number and &, is the saddle point de-
termined by f’(k,;) = 0. k., and f(k,,) are

wz @R

f(kzs) = i_7 (9)
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where R(= [(r —a)® +z%]'/?) is the source-receiver distance.
Substituting equations 3 and 7 into equation 8, one can obtain a
quadratic equation of k,:
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The outer integral of @ is commonly evaluated
by the fast Fourier transform. The focus of this
paper is to present an efficient method to com-
pute the integral of k_:
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which is also known as wavenumber integration.

From the real axis to the steepest
descent path

The first step to construct the SDI is deforming

r=2z=1000 m

r=z=250m

Saddle point of P-waves = l 1

the integration path from the real axis to the steep-
est descent path. The integrand of the wavenumber 0.3
integration, U, .(r, ®, k.) exp(ik.z), is a summa-
tion of products of Hankel functions and exponen-
tial functlons Se aratlng U,.(ro, k -)exp(ik.z)
into the H\" r) part and the H,," (m (k(s)r) part,
the oscillatory behav10r of each part is controlled
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Figure 2. High oscillatory integrand due to the large source-receiver distance. The in-
tegrand of real-axis integration for receivers at three different distances is presented. The
oscillation increases as the source-receiver distance increases. The high-oscillatory part
requires dense sampling, but contributes little to the final integral.
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R%K2 + 2i[f (k,,) — X*|zk,
—{[f(kyy) = X2 4+ @?(r — a)?*/c\*?} = 0. (10)

It is the equation of the steepest descent path. Based on Cauchy’s
integral theorem in complex analysis, a contour integral is path-in-
dependent when the paths connect the same two points. Therefore,
integrating along the steepest descent path and the real-axis path is
identical if the contributions of poles and branch cuts are consid-
ered. Substituting equations 7 and 8 in equation 6, one can obtain

/_ IO (k, (X)) exp(£) (kuy) LX) exp(~X2)dX

o0

+ / " IFO k(X)) exp(FO) (k) JKL(X)] exp(—X2)dX.
(11)

It is then evaluated by the numerical integration method.
Throughout the paper, we use two methods. When comparing
the SDI with the real-axis method on accuracy and efficiency,
we adopt the trapezoidal quadrature, which is straightforward for
analysis. When computing the near-field synthetics, we adopt the
adaptive Gauss-Kronrod quadrature instead (Press et al., 1992),
which can easily deal with the singularity caused by poles in

a) Imkz
0.08

\ : Branch point

Real-axis path

near-field cases. Given the form of equation 11, Gauss-Hermite
quadrature could be a more efficient algorithm. However, because
it is not adaptive, it can only be an alternative for far-field cases.

Multivalued functions

The trickiest issue is the multivalued function. The U, _(r, w, k)
has two values over the complex plane of k, due to the square-root
function appears when calculating radial wavenumber k,:

k,(k,) = (@2/cesD2 — k2)3, 12)

In conventional real-axis integration, the Sommerfeld radiation
condition is used to select the physically meaningful value provided
that no incoming wave exists (Meredith, 1990), resulting in a single-
valued integration path. In the branch-cut method, the single-valued
path is determined by analytically deforming the path in real-axis
integration to the branch cut (He and Hu, 2009). SDI adopts a sim-
ilar method to determine the value on the integration path, i.e., by
analytically deforming the path in real-axis integration to the steep-
est descent path. During the deformation, if the integration path
sweeps across a branch point, &, changes its sign and an additional
contribution of a contour around the branch cut is involved in the
integration; if it sweeps across a pole, a closed contour circling the
pole is added.
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Figure 3. SDI. This figure shows an example of SDI and its comparison with real-axis integration. (a) The integration path of SDI (solid line)
and the real-axis integration (dashed line) used in computation. A thin gray line is used to show a more complete steepest descent path. The
saddle point is denoted by a circle, and the branch point is denoted by a dot. The vertical dotted line connected to the branch point is one choice
of branch cut. (b) The integrand of real-axis integration (real part of the radial component). The circle marks the value corresponding to the
saddle point. The integrand is highly oscillatory except in the vicinity of saddle points. (c) The integrand of SDI (the real part of the radial
component of the P-wave). The circle marks the value corresponding to the saddle point. The integrand is smooth and decays extremely

quickly.
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The integration path of the SDI deforms along with the location
of receivers; then, obtaining the single-valued path is more compli-
cated than the real-axis method and the branch-cut method, which
deal with a fixed integration path (Figure 4a). To simplify the
strategy of choosing the radial wavenumber, we analyze all the pos-
sible conditions and categorize them to three different types. For
each type, we choose a branch cut that has no intersection with
the steepest descent path. Figure 4 shows an example of w > 0
and z > 0. The path intersects the real axis in two points, k;
and k,. The term k; is the saddle point k,; in equation 9, and
ky = wR /!5 2. If the branch point k, = w/c(*/) is smaller than
both the two points, the branch cut in Figure 4b is chosen. If k. is
between the two points, the vertical branch cut is chosen (Figure 4c¢).
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If k. is larger than both the two points, the branch cut in Figure 4d
is chosen. Figure 4e and 4f illustrates two variants of the sec-
ond type.

In numerical implementation, the detailed strategy is slightly
modified for simplicity and robustness. The square-root function
provided by most numerical libraries has a branch cut like the
one shown in Figure 4d. Because the square-root function is a
two-valued function, this branch cut provides two single-valued
function. The Sommerfeld cut also provides two single-valued
functions (He and Hu, 2009). Then, we have four single-valued
functions of the square-root function in total. Splitting the steepest
descent path into two segments at the saddle point by setting X > 0
and X < 0, the integrand on each segment is computed by one of the
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Figure 4. Sketch map of constructing a single-valued function of k,. (a) Steepest descent path and value changes of k, along the path. (b-d) are
the three different conditions and the corresponding strategy for obtaining a single-valued k,. (e and f) The two variants of condition (c), and
they use the same strategy as (c).
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four single-valued functions, according to the frequency w, vertical
distance z. The detailed strategy is described in Table 1.

The multivalued Hankel functions Hﬂl'z)(k,r) are another issue
because the numerical libraries only provide routines to compute
one single-valued function. The single-valued function corresponds
to —z < Argk, <z, which is adequate for real-axis integration.
However, SDI requires Hs,l’z)(k,r) analytic on —z<Argk,<1.5x.
To tackle this issue, we utilize the relationship between the
H 5,1)(k,r) and HYY) (k,r), to extend the analytic domain of HY (k,r)
to —7 < Arg k, < 2z (Gradshteyn and Ryzhik, 2007):

Hg,l)(k,r).
exp(izm)HE?)(k,r exp(—ir)),

—r<Argk, <m,
m<Argk, <2n.
13)

HY (k,r) = {

COMPARISON WITH ANALYTICAL
ASYMPTOTIC SOLUTIONS

Before comparing with the real-axis integration, SDI is first va-
lidated by comparing with the far-field analytical asymptotic solu-
tions (Heelan, 1953). SDI is applicable to all source-receiver
distance and any frequency, whereas asymptotic solutions are accu-
rate only when |k,a| is small and |k, 7| is large, called the Heelan
regime in Blair (2007). Thus, the comparison in this subsection is
constrained in the Heelan regime.

In the following examples, the velocities of P- and S-waves of the
solid medium are 2074 and 869 m/s, respectively. The typical value of
the borehole radius is 0.1 m (Tubman et al., 1984). A source with a peak
frequency of 30 Hz is used. The receiver is at r = 1000 m, z = 0 m.
The term &, depends on frequency f, velocity ¢, and take-off angle:

2
k, = —ﬂf cos ¢.
c

(14)

These parameters result in wavenumbers of 0.09 and 0.22 for the
P- and S-waves respectively, satisfying the small |k.a| and large
|k.r| conditions:

Xu et al.

lk,a| < |ka| =0022 <1,  |k#|=90>1. (I5)

The source is a radial stress acting on the borehole wall, and two
kinds of source time functions are tested. The first one is a Ricker
wavelet, which is commonly used in waveform modeling in explo-
ration seismology (Figure 5a):

if 0 <r<2t,.,

_ [ 6@ =222 13, (1 = )] exp(=a> f3,(t = 1)%),
(1 Ola = { 0, otherwise,

(16)

where o,, is the radial stress, 5(z) is the delta function, f,, is the
peak frequency of the Ricker wavelet. The wavelet is truncated at
+t. =1/f, = 1/30 s and delayed .. Hence, the source starts at
time O and lasts for 27,. A time window [R/c(®) — ., R/c®®) + 3t]
is used to cover the P- and S-waves, where c(¢*) are the velocity of
P- and S-waves, respectively. The second one is a more realistic
function (Blair, 2007; Figure 5b):

6, (r,1)],—, = 8(z)Pyn(ey/n)"H(t)t"e ",  (17)
where Pyy is the von Neumann borehole pressure, H(r) the
Heaviside unit-step function, y a pressure decay parameter, and n an
empirical integer. We use y = 1000, n = 6 in this example.

Excellent agreement is found between the synthetic seismograms
generated by SDI and the analytical asymptotic solutions for both
source-time functions. It supports the validity of the SDI under the
Heelan conditions (Blair, 2007), which is a necessary condition for
the general validity.

COMPARSION WITH REAL-AXIS INTEGRATION
Accuracy comparison in the far-field

We compare the accuracy of the real-axis integration and SDI in
two aspects. First, we analyze the general characteristics of their
accuracy by comparing the root-mean-square (rms) errors of the

Table 1. Strategies for obtaining a single-valued function k,. Denote K = sqrt(w/c* — k), Re K > 0 is the value directly provided
by numerical libraries. Three other single-valued functions can be constructed by —K if Im K > 0, —K if Im K < 0 and —K. We
denote the four functions as 0, 1, 2, and 3. The singled-valued function can be obtained as follows. First, determine the possible
strategies according to Table (a). Then, if the number of possible strategies is larger than one, choose the right one based on the
relationship between the branch point &, and the intersection points of the steepest descent path and the real axis k;, k, (Tables
b-d). L, R denote the left and right segments of the steepest descent path, respectively.

(a) Possible strategies for choosing k&,

Steepest descent path P S
Horizontal wavenumber kEC) kSS’/ ) k@ k&ﬂ‘f )
Strategies 1 I, II, I I I, 11, I
®) L [k < |k| < [ky] © I |k.| < [ki| < |ky (&) IL [k | < |ky| < [k|
L R L R L R
z2>0 w>0 0 1 z>0 w >0 3 1 z>0 w >0 0
w<0 2 0 w<0 2 3 w<0
z<0 >0 1 0 z<0 w>0 1 3 z<0 w>0
w<0 0 2 w<0 3 2 w<0
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Figure 5. Comparison of a synthetic seismogram (dashed) with the
analytical solution (solid) in the far-field using (a) the Ricker wave-
let and (b) a more realistic wavelet (Blair, 2007). The synthetic seis-
mogram is computed by SDI. The analytical solutions are obtained
by Heelan (1953) using asymptotic analysis. They both are normal-
ized by the maximum amplitude of the analytical solution; thus, the
relative ratio between the amplitude of synthetic and analytical sol-
utions is retained.
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synthetic seismograms. The rms errors are measured by the rms of
the difference between the synthetic seismograms and the analytical
asymptotic solutions. Then, the detailed features of the seismo-
grams are compared to study the spurious arrivals caused by spatial
aliasing.

The synthetic seismograms at »r = 1000 m, z = 200 m are gen-
erated using the same parameters as the ones in the last section (Fig-
ure 6a and 6b). Changing z from O to 200 m adds S-waves to the
seismograms. We compute seismograms with different numbers of
sampling points N for wavenumber integration. The range of N
tested is from 3 to 1000. The sampling in the frequency integration
stays unchanged through the following examples. Several represen-
tative examples are shown in Figure 6a and 6b. Two basic obser-
vation are that (1) the SDI needs much fewer sampling points
(N = 10) than the real-axis integration (N = 1000) to obtain a good
result, implying that SDI is more accurate and (2) the seismograms
generated by real-axis integration have significant spurious arrivals
when N is small, whereas those of SDI do not.

The rms errors, which are normalized by the peak amplitude of
the analytical solutions, are plotted against the number of sampling
points N. A positive correlation between the normalized rms errors
and N is observed before N exceeds a certain limit of N;, (Fig-
ure 6¢). The N,;, are approximately 10 for SDI and 500 for real-
axis integration in this example. Again, we find that SDI reaches
maximum accuracy with fewer sampling points, i.e., 2% of the
number of sampling points that the real-axis integration needs.
Therefore, SDI has much higher accuracy.

To examine the spurious arrivals more closely, we zoom in on a
short period just before the S arrivals (Figure 7). The bottom two
seismograms are generated with extremely large N, regarded as the
references. The eight seismograms above demonstrate the changes
of seismograms as N increases. The spurious arrivals are evident in

c)
0
10 . .
{100 + Steepest descent
\ ® Real-axis
= + 3 \
o \
= 1 \ \
o 10 | \
1%} \ \\ 200
E +s
3 ‘ ‘
N \ \
© | \
2 \
§ 1071 ks \
Z X \
\
\ 500 1000
+10 o o
-3
10 i i H
10° 10" 102 10° 10*

Number of sampling points

Figure 6. Synthetic seismograms of a different number of sampling points N for (a) real-axis integration and (b) SDI and their accuracy (c).
Synthetics are dashed lines. The analytical solution (solid line) is used as a reference. Seismograms are normalized with respect to the maximum
amplitude of the analytical solution. The accuracy in (c) is measured by normalized rms errors of numerical results. The rms errors of the SDI are
denoted by crosses, and the real-axis integration is denoted by dots. Results are colored gray when the rms error stops decreasing.
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the left four seismograms, which are computed by real-axis integra-
tion, until N reaches approximately 3000. In contrast, no spurious
arrival exists in the seismograms generated by SDI, even with as

===- Numerical —— Analytical

Real-axis
0.301 4
0.15 2
0.001 F A A < 0
-0.15 1 21 T
-0.30- v 4
0.002 1 5.0 T
0.001 A 254 TR
0.000 - 0.0-
-0.001 - —2.5-
-0.002 - _5.0-

5.0
2.51
0.0 1
-2.57
-5.0

1e-9 Steepest descent

G 2
. I

e A=
- ©

2

1

~

1e-10

1.0 ™~

051 T
0.0+ -
~0.5 1
-1.01

1.0 ™

059 e
00— o=
~0.51
-1.0-
0.9 1.0 1.1 0.9 10 1'1

Time (s)

Time (s)

Figure 7. Magnification of the synthetic seismograms shown in Figure 5a and 5b in
(0.9, 1.1 s). Numerical results are denoted by dashed lines, and analytical solutions
are denoted by solid lines. Both are normalized by the maximum amplitude of the ana-
lytical solution in Figure 5a and 5b. The analytical solutions are extremely close to zero
and appear as straight lines on the x-axis, so we have removed the x-axis in all sub-
figures. The real-axis integration and SDI present similar results with a large N. Spurious
arrivals are evident in the results of the real-axis integration until N > 3000, whereas no
spurious arrivals appear in synthetics of SDI.
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Figure 8. Comparison on computation time. Computation times of SDI (crosses) and real-
axis integration (dots) are compared with respect to (a) the number of sampling points and
(b) the normalized rms error. SDI is less efficient when using the same number of sampling
points, however, when it costs less time to achieve the same accuracy.

small as seven sampling points. Therefore, SDI is also more accu-
rate in terms of spurious arrivals. The spurious-arrival-free feature is
of extreme importance in identifying signals and interpreting results

when the signal-to-noise ratio is low or complex
structures are involved.

Efficiency comparison in the far-field

The efficiency of the SDI and the real-axis in-
tegration are compared on a laptop with Intel
Core i7-4712HQ. The two methods are both
implemented in MATLAB. Comparing the com-
putation time with respect to the same N shows
that the SDI is less efficient (Figure 8a). The
extra time is due to computing the steepest
descent path and dealing with the multivalued
functions. Nevertheless, SDI is more efficient
with respect to the same accuracy (Figure 8b) be-
cause it needs a much lower N to reach a certain
accuracy, which significantly reduces the overall
computation time. When reaching maximum ac-
curacy, SDI costs 1.06 s with 10 sampling points,
whereas the real-axis integration costs nearly
three times as much, i.e., 3.92 s, with N = 500.
Therefore, despite the additional computation,
SDI is still more efficient than real-axis integra-
tion in terms of the same accuracy.

Comparison of high-frequency
near-field seismograms

The near-field case is necessary to demon-
strate that SDI is applicable to all domains of
R. It is more complicated for SDI than the far-
field case because the influence of local charac-
teristics of the integrand becomes evident. The
pole’s contribution is also more evident. To
evaluate the wavenumber integration accurately,
we use the adaptive Gauss-Kronrod rule instead
of the simple trapezoidal rule. The seismograms
atr = 1, z = 01is calculated for 500, 1000, 2000,
and 5000 Hz Ricker wavelets by SDI, the real-
axis method, and asymptotic solutions. They
are compared in Figure 8 to show that the seis-
mograms by SDI and real-axis method are very
close, which is a cross-validation of both meth-
ods. A significant difference from the far-field
examples is that asymptotic solutions are no
longer accurate even for small |z/r| (Figure 9).

Dependence of computation time on
source-receiver distance

Heretofore, we have been found that SDI can
generate correct synthetic seismograms for the
near- and far-fields, and it is advantageous re-
garding accuracy and efficiency in the far-field.
Whether this efficiency remains for the near-field
is still an open question. In this example, we
compute seismograms for varied source-receiver
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distance, from 1 to 5000 m. To reduce the bias introduced by the
choice of sampling points, the number of sampling points N is set to
Nin for each distance (Table 2). For real-axis integration, the N,
increases as R increases; whereas for SDI, the N ;, approximately
remains constant. Closer examination shows a slightly decreasing
trend of the N;, as R increases for SDI (supplementary information
that can be accessed through the following link: Figure S1).

The computation time for different source-receiver distances are
thus obtained (Figure 10). The computation times of both methods
have a positive relationship with R, while when increasing the rate
of SDI, it is smaller. SDI is generally faster than the real-axis
method despite that the real-axis method is slightly faster in the
near-field. Therefore, SDI becomes slightly less efficient than the
real-axis method in the near-field. However, it still has advantages
in being free of spurious arrivals and the individual handling of
different arrivals.

Effects of truncation and discretization of wavenumber
integration on comparison

Truncation and discretization of the infinite wavenumber integral
affect the precision and computation time of SDI and real-axis in-
tegration, which may introduce bias in the comparison. Generally, a
large truncation or a small sampling interval gives better precision
and a longer computation time. A proper truncation should be the
minimum truncation that guarantees sufficient accuracy. A proper
sampling interval should be the maximum interval that guarantees
sufficient accuracy. For a given dominant frequency of the source
and source-receiver distance, the proper truncation and sampling
intervals depend on the desired accuracy. The most straightforward
method to determine them is trial and error. Synthetic seismograms
are computed for different truncations and sampling intervals using
the two methods, and their accuracy is measured by the normalized
rms errors (Figure 11). The general trend is that the rms error re-
duces when the truncation increases and the sampling interval
shrinks. The rms error stops reduction when the truncation and
the sampling interval reach certain thresholds. For real-axis integra-
tion, the threshold of truncation 4, is approximately 0.8 times the
wavenumber of S-waves, |w|/c,, and the threshold of the sampling
intervals is slightly larger than 2z /L, the criterion suggested by
Bouchon (1981). For SDI, the thresholds are approximately 2.5
and 0.5, respectively.

The proper truncation and sampling intervals of real-axis integra-
tion are frequency dependent. Determining the truncation by
evaluating the rms error for each frequency is computationally
expensive. In this study, we adaptively determine the truncation us-
ing the properties of the integrand. The integrand decays as
exp(—iImk,(r — a)), when k, > |w|/c,, then the integration could
be truncated when exp(—ilmk,(r —a)) is smaller than a given
threshold . The truncation is then

1 1
k, = 1og<—) n ‘O(JL (18)
r—a & c's

The threshold « is set to an empirical value, 10~!7, which is appli-
cable to all the examples in this study. Then, when computing a
seismogram, the truncation positively correlates to the frequency
(Figure 11a).

Conversely, the proper truncation and sampling intervals of the
SDI are frequency independent because the effect of frequency is
included in parameter X. The reason is that we set f(k,) =
i(kgc’”r + k.z) instead of i(s(,c’s>r + 5,2), where s\ is the slow-
ness and a)sf""s) = k'), Then, the integrand along the SDP behaves
like exp(—X?) instead of exp(—wX?). Therefore, determining the
truncation and sampling intervals is irrelevant with the frequency.
From Figure 11b, X. = 2 and AX = 0.5 could be the proper choice.
However, we have adopted stricter parameters for all the numerical
examples, i.e., X, =5 and AX = 0.5, to guarantee the validity of
the comparison results.

Comparison of truncation and discretization reveals that SDI
gains no advantage by choosing parameters throughout compari-

£, =5000 Hz

2000 Hz

1000 Hz

500 Hz

Time (ms)

Figure 9. High-frequency waveforms in the near-field (r =1,
z = 0). The synthetics calculated by SDI and the real-axis method
are denoted by solid lines and dots. The analytical solutions are de-
noted by dashed lines. All of the seismograms are normalized by the
analytical solutions. The seismograms of the real-axis method are
down-sampled to clearly show the solid lines under the dots.

Table 2. The N,,;, for different source-receiver distance R.
For each R, the rms errors are evaluated at a different
number of sampling points N. The N, is the value when the
rms error stops decreasing. For real-axis integration, the rms
errors are evaluated at N = 10, 20, 50, 100, 200, 500, 1000,
2000, 5000, and 10,000; for SDI, the rms errors are evaluated
at N =3, 5, 10, 20, 50, 100, 200, 300, 400, and 800.

Nmin
R(m) Real-axis Steepest descent
1 50 10
10 50 10
20 100 10
50 100 10
100 200 10
200 200 10
500 500 10
1000 500 10
2000 1000 10
5000 5000 10
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sons in this paper. Moreover, it has a simpler and more robust strat-
egy for determining the proper truncation and sampling intervals. If
replacing X, = 5 by X, = 2, the SDI could cost less computation
time without losing too much accuracy.
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Figure 10. Increase of computation time for increasing R. The com-
putation times are evaluated using the parameters in Table 2. SDI
(crosses) is much more efficient in the far-field, whereas the real-
axis integration (dots) has advantages in the near-field.
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APPLICATION TO MODELING MACH WAVES

To test the validity of our method in the near-field case, we
compute the wavefield excited by a point source in a fluid-filled
borehole. The wavefield outside the borehole is dominated by
the P-wave, S-wave, and tube wave. If the S-wave is slower than
the tube wave, the tube wave will generate a secondary S-wave,
named the Mach wave, whose characteristics are similar to shock
waves in fluid mechanics (Meredith et al., 1993). Mathematically,
this interesting phenomenon relates to the tube-wave pole, which
moves close to the branch point and influences the integral. Unlike
the real-axis method, SDI needs to include the pole’s contribution
explicitly. The pole is located numerically by the bisection method
for each frequency. The searching bounds are set empirically to
[0.8w/c),1.5w/c¥)]. The branch point @/c*) is excluded from
the search area to avoid numerical overflow. The pole’s contribution
is calculated by integrating along a small square enclosing the pole
by the adaptive Gauss-Kronrod quadrature. The contribution is
added if the pole is located between the steepest descent path
and the real axis.

We use the Pierre shale as the solid medium (Meredith et al.,
1993). The source is an explosive point source with a 100 Hz Ricker
wavelet. The radial and vertical displacements are calculated on a
50 X 50 m grid with 0.5 m intervals. The source is placed at the
origin. The vertical displacements at 40 ms is plotted (Figure 12).
The convex wavefronts of the P- and S-waves are evident in the

1.5 |

20 Il Il

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
hel(wlcs)
______ .
-2.50 -2.25 -2.00 -1.75

-1.50 -1.25 -1.00 -0.75 -0.50

log,o(Normalized rms error)

Figure 11. The rms error diagram of (a) the real-axis integration and (b) SDI. The normalized rms errors are shown in log scale. (a) The A, and
Ah are truncation and sampling intervals of the real-axis integration. The rms error is small when using large truncation and small sampling
intervals. The series of white dots are automatically determined when computing seismograms using N = 500, each corresponding to an
individual frequency. (b) The X, and AX are truncation and sampling intervals of SDI, and the white star is the parameters in this study,

applicable to an arbitrary frequency.
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50 T T T %230 snapshot. A high-amplitude tube wave is traveling along the vertical
borehole. If the S-wave is faster than the tube wave, they are de-
63° B 24 coupled. However, when the tube wave is faster (as in our case),
40 d 18 a straight wavefront connects the tube wave and the S-wave. The
Tube wave angle between the wavefront and the borehole wall is 63°, which
= 12 is identical to the Mach wave example in Meredith et al. (1993).
:g’ 30 Mach wave (Secondary S-wave) los
5 APPLICATION TO REAL DATA FROM BOREHOLE
2 o0 AIR-GUN SOURCE
£ 20 -0.6 o .
= To test the validity of our method in the far-field case, we com-
2 1.2 pare the synthetic seismograms to real seismic records from a bore-
hole air-gun project operated at Xundian, Yunnan Province, China
10 - -1.8 (Yang et al., 2016). The diameter and depth of the borehole are 0.2
o4 and 50 m, respectively. The water level in this borehole is —28 m.
40 ms An air gun with the volume of 250 in? is deployed 12 m below the
0 . . . . -3.0 water level. The air gun fires once per 30 min, and the seismic
0 10 20 30 40 50 waves it generates are recorded by eight stations within the

Distance away from the borehole (m)

Figure 12. Snapshot of vertical displacement generated by a point
source in fluid-filled borehole. The S-wave velocity in the solid
medium is slower than the tube waves, and the Mach wave appears.

1000 m (Figure 13). The velocity model is the same as the ones
in the examples above. We compute synthetic seismograms using
borehole monopole source model. Instead of directly comparing the
waveforms, we compare the variations of the peak envelope ampli-
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Figure 13. Location of the air-gun source and stations in the Xundian downhole air-gun project. The circle denotes the location of the down-
hole air-gun source, and the triangles are the stations used in this project. The epicenter distance ranges from approximately 10 to more than

800 m, providing good coverage of the different emergence angles.
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Figure 14. Comparison of the peak amplitude between synthetic
seismograms computed by SDI (triangles) and real data from the
downhole air-gun project (crosses). Both are normalized by the
peak amplitude of the nearest station. The good consistency be-
tween them supports the validity of applying a borehole source
model to downhole air-gun sources and SDI. The outlier, station
xd7, is also found to have significantly lower amplitude for a local
earthquake due to unknown reasons, and thus it is excluded from the
comparison.

tude with respect to distance because it is difficult to obtain a proper
source-time function for a borehole air-gun source. The peak am-
plitudes of the synthetic seismograms and real data are normalized
by the peak amplitude of the nearest station. The result, as shown in
Figure 14, demonstrates good coherence between the real and syn-
thetic data. In the borehole source theory, the radiation pattern is
dependent on the source-receiver distance and take-off angle.
The result shows that the down-hole source model might be suitable
for interpretation of amplitude information of a wavefield excited by
downbhole air-gun sources. However, it is hardly conclusive because
the discrepancy between the peak amplitude generated by the bore-
hole source model and the point-source model in the far-field is
dominated by spherical spreading. Near-field data are needed in fur-
ther examinations.

CONCLUSION

We present a new method for computing seismograms of bore-
hole sources, i.e., SDI. An outstanding feature of SDI is that it gen-
erates no spurious arrivals. We compare the precision and efficiency
of SDI with the classic real-axis integration, and the results show
that SDI is more accurate and more efficient when computing far-
field seismograms. Additionally, choosing a proper discretization
strategy is easier for SDI because of the smoothness and simplicity
of the integrand. Experiments in different source-receiver distances
demonstrate that SDI is more suitable in far-field cases. However,
the Mach-wave example demonstrates that SDI is also applicable to
the near-field case. Comparison between synthetic seismograms
generated by SDI and real data from a downhole air-gun project
also support the validity of our method. Although this method
was originally designed for computing seismograms for wavefields
excited by borehole sources, it could be extended to other fields in
seismology involving highly oscillatory integrals to further improve
the efficiency and reduce spurious arrivals.
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APPENDIX A

MATHEMATICAL FORMULA OF BOREHOLE
SOURCES RADIATION

Theoretically, borehole source models can be divided into two
categories, namely, the point-source model and the stress-source
model. The point-source model is commonly used in acoustic log-
ging, which consists of monopole, dipole, or quadrupole sources
and a fluid-filled borehole. The stress sources are used to describe
dynamite sources in deep seismic sounding and mining geophysics,
which approximate explosions as stresses acting on the virtual bore-
hole wall. Although arising from different subjects, both models
share a similar mathematical formula. Without losing generality,
we adopt the stress-source model in this study.

Consider an isotropic linear elastic medium embedded with an
empty borehole. The radius of the borehole is denoted by a, and
the Lamé parameters and density of the medium are A, u, and p.
First, the analytical solutions in frequency-wavenumber domain
are obtained. The equilibrium equation in cylindrical coordinates is

do,, 100,y do,, 0, —0py Pu,
ar r a0 o PR
00',9 ladgg ()ng ZO'rg _ azl/lg
o "ro0 "oz T r P
oo,, looy, OJo, o, Pu,
- ——= === p—=, A-1
o rae Ta T TP A-1)

where 6;;(i, j = .6, z) are the stresses, u;(I = r,6, z) are the dis-
placements, and ¢ is the time. Body-force terms are omitted as the
gravitational effect is neglected. Together with Hooke’s law

o A+2u A A 0 0 0 €y
699 A 242w A 0 0 Of| e
oo I ) A A+2u 0 0 Of] e,
%: | — | 0 0 0 u 0 02|
Ore 0 0 0 0 u 0]]2e,
Oro 0 0 0 0 0 ull2e,
(A-2)

and the geometric relationship
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or 0z

a complete partial differential system of u is formed for describing
wave propagation in an elastic solid
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The boundary conditions are given by assuming an axisymmetric
radial source acting on the borehole

(1, 1)],—g = 8(2)G (1),
6,,‘9(7", [)|r:a = 0’
arz(r’ l)|r:a = O’ (A_S)

where §(z) is the delta function and G(7) is the source-time func-
tion. Similar problems have been studied analytically by Heelan
(1953), who consider seismic waves radiated by a finite length of
dynamite exploded in a cylindrical blast hole, then by Lee and
Balch (1982) for a fluid-filled borehole, and Meredith (1990)
and Blair (2007) with semianalytical methods. Despite the various
denotations and specific mathematic techniques adopted, they all
follow the same idea, that is, constructing the wavefield by super-
position of conical waves, and thus they obtain equivalent analytical
solutions. To solve this problem, potential functions are used to sim-
plify the equations. The displacement vector u can be decomposed
into three fields

u=V¢+VX[Vye, +VX(pe,)], (A-6)

where, y represent P-, SV-, SH-waves, respectively. Then, the wave
equation A-4 can be simplified to

02 2 02
<V2_6Z2> { {(/H—Z W2p—p ﬂ +az(yV2u/—pa;g> }20,

9 P P P
% {(/1+2u)V2¢—ﬂ¥} + <0—Z2—V2) (/Nzl//—/)—w> =0,

0? Py

We assume the potential functions have the following form:

et = <2]_7r)2 /_m [ ) )

exp(ik,z — wt)dk dw,
(r.z,1) <2 > +‘XJfQ]r17§L‘>(/c,r)
exp(ik,z — wt)dk,dw,
+oo
(r.z.1) (2 ) / f3Hy' (k,r)
exp(ik,z — a)t)dk dw, (A-8)

where H{"? (z) are the nth order of the Hankel function of the first
or second kind and k,, k, are the radial and vertical wavenumbers,
respectively. Let ¢(©*) be the velocity of P- or S-waves

K24 k2= (A-9)

C(c,s)2 .
The product of the Hankel and exponential functions represents the
conical waves traveling outward, and f , ; are the weights of each
conical wave. The weights are determined by solving the boundary

condition A-5. Finally, the displacements outside the borehole are

U (rko) = K (par — 2ﬂ[l;§)y<ll) (kY a) ) HV N
(s D( D G ),

U(rko ) = el —agczwi‘)(k&”a) Gl ()
- Ziﬂk1k£6)k£ZH<ll> (k) Glo)Hy (k7).

(A-10)

where U,, U, are the radial and vertical components of displace-
ment in the frequency -wavenumber domain, ks and kg) are the
radial wavenumber associated with P- and S-waves, G(w) is the
Fourier transform of the source-time function G(¢), and D is given
by

D = (po? = 2k Hy (ki ) H}" (k" a)
22k kO HYD (K a) Y (k) a)

c 1 c N
—2upak’) ZH§”(1<£ o) B (k7 a). (A-11)
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Then, the solution in the time-space domain is obtained by applying
a 2D Fourier transform on the solutions over the vertical wavenum-
ber k, and the frequency w.

The dual transform can be evaluated analytically, provided that
the radius of borehole a is small compared with the wavelength of
interest and the receiver is in the far-field. The solutions then are
obtained by asymptotic analysis

a <1—ﬁ’;ﬂcosz¢> 4G (t=R/c))
u,(r,z,t) :—ﬁsmqﬁ

+2c0s2¢ﬁG’(t—R/c<s))

a2 (1 —ﬁ—’;ﬂcoszqﬁ) 145G’ (t=R/c'))
u.(r,z,1) :—ﬁcosdb

—2sin’ ;G (1= R/c))
(A-12)

where R(= [(r — a)? + 2%]'/? = (r> + 2%)!/?) is the source-receiver
distance. This far-field solution is a modified version of the Heel-
an’s (1953) solution. The Heelan’s solution has an additional 27l
factor due to the finite length of the source, while we use a source of
infinitesimal length. The far-field solution is used in this study to
verify the numerical results under certain conditions.
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