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Abstract—We carry out full waveform inversion (FWI) in time

domain based on an alternative frequency-band selection strategy

that allows us to implement the method with success. This strategy

aims at decomposing the seismic data within partially overlapped

frequency intervals by carrying out a concatenated treatment of the

wavelet to largely avoid redundant frequency information to adapt

to wavelength or wavenumber coverage. A pertinent numerical test

proves the effectiveness of this strategy. Based on this strategy, we

comparatively analyze the effects of update parameters for the

nonlinear conjugate gradient (CG) method and step-length formu-

las on the multiscale FWI through several numerical tests. The

investigations of up to eight versions of the nonlinear CG method

with and without Gaussian white noise make clear that the HS

(Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409–436,

1952), CD (Fletcher in Practical methods of optimization vol. 1:

unconstrained optimization, Wiley, New York, 1987), and PRP

(Polak and Ribière in Revue Francaise Informat Recherche Oper-

tionelle, 3e Année 16:35–43, 1969; Polyak in USSR Comput Math

Math Phys 9:94–112, 1969) versions are more efficient among the

eight versions, while the DY (Dai and Yuan in SIAM J Optim

10:177–182, 1999) version always yields inaccurate result, because

it overestimates the deeper parts of the model. The application of

FWI algorithms using distinct step-length formulas, such as the

direct method (Direct), the parabolic search method (Search), and

the two-point quadratic interpolation method (Interp), proves that

the Interp is more efficient for noise-free data, while the Direct is

more efficient for Gaussian white noise data. In contrast, the Search

is less efficient because of its slow convergence. In general, the

three step-length formulas are robust or partly insensitive to

Gaussian white noise and the complexity of the model. When the

initial velocity model deviates far from the real model or the data

are contaminated by noise, the objective function values of the

Direct and Interp are oscillating at the beginning of the inversion,

whereas that of the Search decreases consistently.

Key words: Full waveform inversion, nonlinear conjugate

gradient method, step-length formulas, multiscale strategy, fre-

quency-band selection strategy.

1. Introduction

Full waveform inversion (FWI) makes full use of

both the amplitude and phase of the wave altogether

to provide accurate seismic velocity models that can

be used later to characterize earth structures or

reservoirs containing natural resources (Tarantola

1984; Pratt 1990; Ravaut et al. 2004; Tromp et al.

2005; Liu and Tromp 2006; Liu and Gu 2012). It

bridges the gap between the conventional seismic

velocity analysis (in which phase information is

mostly used) and the amplitude versus offset analysis

(in which amplitude information is used). FWI is a

method that aims at finding the best seismic velocity

model to interpret the available data. In such process,

synthetic data are calculated using an assumed model

and compared against the observed data. If the fit is

not acceptable, the model is perturbed, so that the

synthetic data are regenerated and the procedure is

repeated until to approach the convergence. It is a

powerful working tool in seeking images and prop-

erties (such as velocity and impedance) of complex

geological structures (Tarantola 1984; Plessix and Li

2013; Zhang et al. 2014; Zhou et al. 2015). This

approach can be implemented either in time domain

(Tarantola 1984, 1986, 1988; Mora 1987; Vigh and

Starr 2008; Liu and Tromp 2008) or in frequency

domain (Pratt and Worthington 1990; Zhou and
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Greenhalgh 2011). In the frequency domain, a direct

solver based on an LU (lower and upper matrices)

factorization (Davis and Duff 1997) instead of an

iterative solver is efficient for FWI, because it allows

obtain all solutions for all excitation sources simul-

taneously by factoring the impedance matrix only

once (Pratt and Worthington 1990). Usually, only

several frequency points or groups are needed to

obtain a high-resolution reconstructed model. How-

ever, the direct solver faces a challenge in 3D

because of its extremely large computer memory

demand. Unlike frequency-domain FWI, time-do-

main FWI usually extrapolates the seismic wavefields

explicitly, which avoids solving a large-scale alge-

braic equation. Since time-domain FWI needs to

extrapolate the wavefield at all time sampling points

and for all shots, and from this viewpoint, it is

computationally inefficient. However, it can be easily

extended to three dimensions, because it explicitly

extrapolates the wavefields along the time axis (Liu

and Tromp 2008).

FWI is a highly nonlinear inversion problem, so

that its objective function is multimodal (Symes

2008). Although the global optimization methods,

such as the stochastic Monte Carlo-based methods

(Rothman 1985; Kvoren et al. 1991; Mosegaard and

Tarantola 1995) tend to search a global minimum

solution of FWI, the excessive cost required for

convergence makes these methods go beyond the

ordinary computation capabilities. Some feasible and

alternative ways are the iterative local optimization

methods, such as the steepest descent method, the

nonlinear conjugate gradient method (Pratt and

Worthington 1990; Song et al. 1995; Liao and

McMechan 1996; Pratt 1999; Shipp and Singh 2002;

Ravaut et al. 2004; Sirgue and Pratt 2004; Mali-

nowski and Operto 2008; Mulder and Plessix 2008),

the Gauss–Newton method (Pratt et al. 1998; Hu

et al. 2009; Pan et al. 2016, 2017), the quasi-Newton

method (Brossier et al. 2009), or the truncated

Newton method (Métivier et al. 2014; Pan et al.

2016, 2017).

Although the iterative inversion methods are

computationally feasible, the large number of local

minima at all scales impedes FWI to converge to the

vicinity of the global minimum. In particular, these

iterative inversion methods may fail to invert seismic

data obtained from structurally complex models (e.g.,

the Marmousi model) due to the presence of numer-

ous local minima of the objective function, unless the

initial velocity model is already in the neighborhood

of the global solution. To overcome such issue,

Bunks et al. (1995) proposed a multiscale approach

that can improve the performance of iterative local

optimization methods, which decomposes the highly

nonlinear optimization problem into several scales.

Once the inversion problem has been decomposed by

scales, the longer scale components are first inverted

with the idea to greatly reduce the number of local

minima (Fichtner et al. 2013; ten Kroode et al. 2013),

and to get a good guess to the inversion for shorter

scale components (higher frequency band). In fre-

quency domain, the wavefields at different frequency

slices can be naturally decomposed by scales, so that

a careful selection of inversion frequency slices

yields computationally efficient inversion schemes

(Sirgue and Pratt 2004). Therefore, the frequency

selection for the scale decomposition becomes the

core part of the multiscale strategy. In contrast, time-

domain FWI uses multiple frequencies simultane-

ously during the inversion process, which allows

update a much wider range of wavenumber than

using a single frequency at one time. As pointed out

by Sirgue and Pratt (2004), the frequency bandwidth

can adjust the range of wavelength or wavenumber.

Naturally, we can design a frequency-band selection

strategy that guarantees the ranges of wavelength

corresponding to adjacent frequency bands to be less

redundant which leads to an efficient inversion at

each frequency band. In addition, the windowed input

data also alternatively reduce the effects of local

minima by focusing the inversion on different parts of

the data (Sheng et al. 2006; Brenders et al. 2009).

Although FWI exhibits a great potential, many

factors contribute to the inverted results. Pageot et al.

(2013) presented a two-dimensional parametric

analysis of frequency-domain FWI of teleseismic

data for lithospheric imaging, to identify the main

factors that impact on the quality of the inverted P-

and S-wave velocity models. However, a similar

study for the time-domain FWI has not been sys-

tematically conducted to date. In this paper, we

investigate the factors that clearly impinge on FWI in

time domain. In particular, these factors mainly

1984 Y. Liu et al. Pure Appl. Geophys.



include update parameters for the nonlinear conjugate

gradient method and step-length formulas, besides

already known statements, such as the initial velocity

model, local optimization methods, multiscale strat-

egy, and data stacking. Below, we briefly restate

time-domain FWI and then we propose an alternative

frequency-band selection strategy with the help of a

Wiener low-pass filter (Boonyasiriwat et al. 2009).

Next, we consider three effective step-length formu-

las to optimize the nonlinear inversion process. After

that, we perform a series of numerical tests to study

the effects of the cited influencing factors on FWI.

Finally, we draw interesting conclusions from all this

computational work. Of course, the present work

does not deplete the subject. Certainly, some other

factors also affect the performance of FWI, such as

the absence of low-frequency data (ten Kroode et al.

2013) and types of objective functions, etc. However,

these other issues go beyond the scope of this paper,

although deserve further attention in the future.

2. Theory

2.1. Full Waveform Inversion in Time Domain

For the sake of completeness, in this section, we

briefly summarize the theory of full waveform

inversion in time domain. FWI is traditionally

expressed as the minimization of the sample-by-

sample differences between the observed and simu-

lated seismic data, so that a starting velocity model is

updated iteratively. Usually, FWI in time domain

tries to minimize the following L2 (least-squares)

norm objective function:

E cð Þ ¼ 1

2

X

s

X

r

Z
dp xr; t xsjð Þ½ �2dt; ð1Þ

dp xr; t xsjð Þ ¼ pcal xr; t xsjð Þ � pobs xr; t xsjð Þ; ð2Þ

where dp xr; t xsjð Þ is the data residuals; the subscripts

s and r denote summations over sources and recei-

vers, respectively; pcal xr; t xsjð Þ and pobs xr; t xsjð Þ are

the observed and simulated data at the receiver

position xr and the time instant t, respectively, which

are excited by a source located at the position xs. The

wavefields are computed through forward modeling

by solving the following constant density acoustic-

wave equation:

o2

ot2
p x; t xsjð Þ ¼ c2r2p x; t xsjð Þ þ f xs; tð Þ; ð3Þ

where p x; t xsjð Þ is the pressure field at the spatial

location x arising from a disturbance at the source

location xs; c xð Þ is the velocity of medium at the

location x; r2 is the Laplace operator; and f xs; tð Þ is

the seismic source function. In all experiments, we

adopt a central finite-difference stencil of the 16th-

order accuracy in space and the second-order accu-

racy in time to extrapolate the source and receiver

wavefields. We solve the second-order constant

density acoustic-wave equation considering perfectly

matched layers as absorbing boundary conditions

(Liu et al. 2012) to suppress spurious reflections

coming from artificial boundaries.

Although some estimation methods based on a

random sampling of the model-space can be theoret-

ically applied, it is a long and costly process, because

it requires a large number of evaluations of the misfit

function for each new model (Rothman 1985; Kvoren

et al. 1991; Guitton et al. 2012). Currently, the local

optimization methods are usually preferred due to its

computational efficiency, although inherently are

limited to local convergence and cannot guarantee a

global solution (Pratt et al. 1998). For the local

optimization methods, the computation of the gradi-

ent with respect to velocity model becomes the core

part of FWI.

Usually, an efficient computation of the gradient

is based on the so-called adjoint-state method

(Plessix 2006). In the framework of the adjoint-

state method, the gradient of the objective function

(1) with respect to velocity model c xð Þ is calculated

by the zero-lag cross-correlation between forward-

propagated wavefield and backward-projected wave-

field residuals (Tarantola 1984; Boonyasiriwat et al.

2009):

g xð Þ ¼ 2

c xð Þ
X

s

Z
o2

ot2
p x; t xsjð Þ q x; t xsjð Þ dt

¼ � 2

c xð Þ
X

s

Z
o

ot
p x; t xsjð Þ o

ot
q x; t xsjð Þ dt;

ð4Þ
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where p x; t xsjð Þ denotes the forward-propagated

wavefield, while q x; t xsjð Þ denotes the backward-

projected wavefield residuals.

2.2. Local Optimization Methods

Once the gradient (4) is available, the nonlinear

optimization problem (1) can be solved by the

steepest descent (SD) method:

ckþ1 ¼ ck � akgk; ð5Þ

or the nonlinear conjugate gradient (CG) method

ckþ1 ¼ ck þ akdk; ð6Þ

dk ¼ �gk þ bkdk�1; ð7Þ

where ak is the step-length at kth iteration; gk is the

gradient; and bk is a scalar parameter that has many

variants. The different ways in which this parameter

b can be chosen lead to distinct versions of the

nonlinear CG method. At present, various choices for

the nonlinear CG update parameter are available

(Hager and Zhang 2006). These update parameters

include the HS (Hestenes and Stiefel 1952), FR

(Fletcher and Reeves 1964), PRP (Polak and Ribière

1969; Polyak 1969), CD (Fletcher 1987), LS (Liu and

Storey 1991), DY (Dai and Yuan 1999), HZ (Hager

and Zhang 2005), and HZ1 (Liu et al. 2014) versions.

These update parameters are listed as follows:

bHS
k ¼ gT

k yk

dT
k�1yk

; ð8aÞ

bFR
k ¼ gkk k2

gk�1k k2
; ð8bÞ

bPRP
k ¼ gT

k yk

gk�1k k2
; ð8cÞ

bCD
k ¼ � gkk k2

dT
k�1gk�1

; ð8dÞ

bLS
k ¼ � gT

k yk

dT
k�1gk�1

; ð8eÞ

bDY
k ¼ gkk k2

dT
k�1yk

; ð8fÞ

bHZ
k ¼ yk � 2dk�1

ykk k2

dT
k�1yk

 !T
gk

dT
k�1yk

; ð8gÞ

bHZ1
k ¼ yk � dk�1

ykk k2

dT
k�1yk

 !T
gk

dT
k�1yk

; ð8hÞ

where yk ¼ gk � gk�1 is the gradient change; kk
represents the L2 norm. In fact, we use the following

modified scalar parameter:

bþk ¼ max 0; bf g; ð9Þ

which ensures the convergence of the nonlinear CG

method (Hager and Zhang 2006). However, the

remaining question is which of the many available

choices for the CG update parameter is the most

effective and efficient. In the next section, we will take

care of this issue through several numerical examples.

The optimization problem (1) can be also solved

by the Gauss–Newton method:

ckþ1 ¼ ck þ akdk; ð10Þ

dk ¼ �H�1
k gk; ð11Þ

where Hk is the approximate Hessian matrix. The

inverse Hessian operator acts as deconvolution

operator that accounts for the limited bandwidth of

the seismic data and corrects for the loss of amplitude

of poorly illuminated subsurface parameters. Hence,

the Newton-based methods possess better conver-

gence properties (superlinear to quadratic

convergence rate). In general, the explicit computa-

tion of the Hessian matrix is always expensive, which

goes beyond the capability of modern computer

hardware, especially for 3D models with millions and

even billions of unknowns.

Nevertheless, a practical scheme is the Limited-

memory Broyden–Fletcher–Goldfarb–Shanno method,

i.e., the L-BFGS approach (Broyden 1970; Fletcher

1970; Goldfarb 1970; Shanno 1970) proposed by

Nocedal (1980), which appears to be one of the most

robust and efficient limited-memory quasi-Newton

algorithms. This quasi-Newton approach iteratively

computes an estimation of the product of the approx-

imate inverse Hessian matrix Bk and the gradient gk

using the history of the solution and gradient vectors.

1986 Y. Liu et al. Pure Appl. Geophys.



One of the main benefits of this technique is that the

approximate inverse Hessian matrix is never explicitly

formed, thus involving significant memory savings

(Nocedal 1980; Guitton and Symes 2003; Brossier

et al. 2009). The product of the approximate- or quasi-

inverse Hessian matrix and the gradient can be

calculated using a recursive formula with information

from the last m iterations, where m is any number

supplied by the user. The application details can be

seen in Nocedal (1980). At each iteration, we use the

following initial inverse Hessian matrix given by

Nocedal (1980):

B0
k ¼ yT

k sk=y
T
k ykI; ð12Þ

where I is the identity matrix with the same dimension

as B0
k ; sk ¼ ck � ck�1 is the model change. In the fol-

lowing experiments, the number of the stored y and s

for corrections used in the L-BFGS approach is set to

10. Usually, an effective descent direction generated

by the L-BFGS method must be well behaved, which is

ensured by the Wolfe linear search (Nocedal and

Wright 1999; Wu et al. 2015). Here, we also consider

this special case. In this case, the L-BFGS method fails

to generate an effective descent direction to decrease

the objective function value (i.e., a nonpositive definite

Hessian matrix). We use the negative gradient as the

descent direction when the sufficient descent condition

gT
k dk\0 is not satisfied (Hu and Wang 2014). Another

alternative method is the truncated Newton method

(Métivier et al. 2014; Pan et al. 2016, 2017). At each

iteration, the model update is computed as an approx-

imate solution of the Newton equations through a

linear iterative solver (such as a conjugate gradient

solver). This iterative solver only requires computing

Hessian-vector products in a matrix-free fashion. It is

also not necessary to form the Hessian operator

explicitly. Although this method is a better approxi-

mation to the inverse Hessian than the L-BFGS

method, it needs much more computation.

In summary, the descent direction of the above

three local optimization methods (SD, CG, and L-

BFGS) can be formulated by means of the following

generalized expressions:

dk ¼
�gk; ðSDÞ
�gk þ bkdk�1; ðCGÞ
�Bkgk; ðL - BFGSÞ

8
<

: ; ð13Þ

where Bk is the approximate inverse Hessian of the

L-BFGS method.

2.3. Inversion Step-Length Formulas

As for local optimization methods, the descent

direction must be scaled by a proper scalar, i.e., an

appropriate step-length, to ensure the declining value

of the objective function at each iteration. FWI is an

inversion problem that requires intensive computation,

so an efficient and cost-effective step-length formula is

extremely important in this context. In this study, we

consider three cost-saving step-length formulas.

2.3.1 Direct Method

Pica et al. (1990) derived an optimum step-length

formula for time-domain FWI. The formula can be

written as follows:

a¼�
P

s

P
r

R
pcal ck þ atdkð Þ� pcal ckð Þ
� �

� dp xr; t xsjð Þdt
P

s

P
r

R
pcal ck þ atdkð Þ� pcal ckð Þ½ �2 dt

at;

ð14Þ

where at is a test step-length; ck is the velocity model

at kth iteration; and dp xr; t xsjð Þ is the data residuals.

The test step-length should be satisfy the following

condition:

max atdkj jð Þ� 1

100
max ckð Þ: ð15Þ

To compute the optimum step-length, only an extra

forward modeling is required.

2.3.2 Parabolic Search Method

At current state, i.e., ck at kth iteration, by applying the

Taylor series expansion of a up to the second order, the

objective function (1) can be approximated as follows:

E ck þ adkð Þ � E ckð Þ þ a rE ckð Þ½ �Tdk þ
a2

2
dT

k r2E ckð Þdk

¼ E ckð Þ þ a
oE ck þ a dkð Þ

oa a¼0j

þ a2

2

o2E ck þ adkð Þ
oa2

����a¼0

¼ c þ baþ aa2:

ð16Þ
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This expression can be approximated by fitting a para-

bola and finding its minimum. Then, if the values of the

objective function at three states are available and these

values satisfy the following condition (Vigh et al. 2009)

E ck þ at1dkð Þ\E ckð Þ
E ck þ at2dkð Þ[E ck þ at1dkð Þ
0\at1\at2

8
<

: ; ð17Þ

which ensures that the desired step-length is brack-

eted in the interval 0; at2½ �. The optimum step-length

can be calculated under the condition of minimum

(aopt ¼ �b=2a) through the determination of the

unknown parameters a and b. Once we find two step-

lengths satisfying the condition (17), we have the

following relationship:

E ckð Þ ¼ c

E ck þ at1dkð Þ ¼ c þ bat1 þ aa2
t1

E ck þ at2dkð Þ ¼ c þ bat2 þ aa2
t2

8
><

>:
: ð18Þ

After solving the equation system (18), the

optimum step-length is given by the following:

aopt ¼ � b

2a

¼ �
a2

t2E ck þ at1dkð Þ � a2
t1E ck þ at2dkð Þ þ E ckð Þ a2

t2 � a2
t1

� �

at1E ck þ at2dkð Þ � at2E ck þ at1dkð Þ þ E ckð Þ at2 � at1ð Þ :

ð19Þ

To compute the optimum step-length (19), at least

two times extra forward modeling are needed, because

the satisfaction of the condition (17) may need more

number of extra forward modeling instead of just two

times. Figure 1 outlines the principle of the parabolic

search method. Although the linear search method

satisfying the Wolfe condition for determining the

step-length (Nocedal and Wright 1999) ensures an

effective descent direction generated by the L-BFGS

method, the Wolfe linear search involves the extra

computation of gradient with the model updated by a

test step-length. It violates the cost-effective purpose,

because FWI inversion is itself an expensive process.

In this paper, we implement the standard parabolic

search method or parabola fitting, as Brossier et al.

(2009) and Vigh et al. (2009) made.

2.3.3 Two-Point Quadratic Interpolation Method

Unlike the parabolic search method, the two-point

quadratic interpolation uses not only the value of the

misfit function but also the gradient at current state.

Comparing the terms of the right sides of the expres-

sion (16), we obtain the following relationships:

c ¼ E ckð Þ
b ¼ rE ckð Þ½ �Tdk ¼ oE ckþadkð Þ

oa a¼0j

�
: ð20Þ

If the value of the objective function calculated

with the velocity model updated by a test step-length

at is available, we obtain

E ckð Þ ¼ c

E0 ckð Þ ¼ b

E ck þ atdkð Þ ¼ c þ bat þ aa2
t

8
<

: : ð21Þ

Here, the prime represents the derivative with

respect to a. With the help of the relationships (20)

and (21), the three undetermined coefficients are as

follows:

a ¼ E ckþatdkð Þ�E ckð Þ�bat

a2
t

b ¼ rE ckð Þ½ �Tdk

c ¼ E ckð Þ

8
><

>:
: ð22Þ

Applying Eq. (16) and the condition of minimum

(aopt ¼ �b=2a), we can obtain the optimum step-

length

a ¼ � b

2a
¼ � bat

E ck þ atdkð Þ � E ckð Þ � bat½ � at: ð23Þ

For this step-length formula, the test step-length

at is crucial. Although Tape et al. (2007) suggested

f ( )ck

f +( )c dk t kα 1

f +( )c dk t kα 2

αt1 αt2αopt

Figure 1
Illustration that schematically outlines the principle of the parabolic

search step-length formula

1988 Y. Liu et al. Pure Appl. Geophys.



the test step-length as at ¼ � 2E ckð Þ
b

, i.e., the trough of

the parabolic curve, it may cannot reduce the

objective function value, because this test step-length

cannot ensure that the desired step-length is brack-

eted in the interval 0; at½ �. In this study, we first start

from a small step-length to check whether it satisfies

the following condition:

at [ 0

f ck þ atdkð Þ� f ckð Þ

�
: ð24Þ

If the condition (24) is not satisfied, then we

increase the test step-length at until to satisfy. Once

this condition is met, the interval 0; at½ � brackets the

optimum step-length. The principle of the two-point

quadratic interpolation method is illustrated in Fig. 2.

To compute the optimum step-length, the two-point

quadratic interpolation method needs at least one

extra forward modeling.

In terms of computational efficiency, at each

iteration, the two-point quadratic interpolation

method (hereafter named simply Interp) may be

slightly costlier than the step-length of the direct

method (hereafter named Direct) as above analysis.

However, the parabolic search method (hereafter

named simply Search) is most inefficient as it needs

at least two times extra forward modeling. In the next

section, we investigate the efficiency, accuracy, and

robustness of these step-length formulas. To improve

efficiency, we only carry out forward modeling from

a certain number of evenly distributed shot points to

determine the optimum step-length for a test step-

length.

To measure the accuracy (error) of the inverted

results, we use the following mean absolute percent-

age error (MAPE):

e ¼ 100

N

X

n

cn
true � cn

inv

cn
true

����

����; ð25Þ

where N is the total number of grids of the discretized

model; jj represents the absolute operator; ctrue and

cinv are the real and inverted velocity models,

respectively; and n is the index of the grid point. The

smaller the MAPE, the more accurate the inverted

result.

2.4. Frequency-Band Selection Strategy

Bunks et al. (1995) were the first to propose a

multiscale approach to mitigate the nonlinearity of

FWI in time domain. They adopted a finite-impulse

response Hamming-window filter for low-pass filter-

ing the seismic source wavelet and data. This

multiscale scheme performs the inversion sequen-

tially from low-frequency data to high-frequency

data. As a result, the multiscale FWI is more likely to

reach the global minimum (Sirgue and Pratt 2004;

Boonyasiriwat et al. 2009), because the misfit func-

tion at low-frequency band is more linear with

respect to the slowness than at high-frequency band

(Bunks et al. 1995). However, the Hamming-window

function is a leaky low-pass filter, which means that

the Hamming-windows low-pass filter may con-

tribute to the objective function value.

Boonyasiriwat et al. (2009) proposed a Wiener low-

pass filter that is more efficient than the Hamming-

window low-pass filter. The amplitudes of leaked

high-frequency components with the Wiener filter are

several orders of magnitudes smaller than those

obtained with the Hamming filter. In this paper, we

adopt the Wiener filter for inversion. To further

improve the efficiency of FWI, we utilize a larger

time interval at low-frequency band and a smaller

time interval at high-frequency band according to the

Courant number.

Initially, Sirgue and Pratt (2004) proposed a

frequency-band selection scheme for FWI in

Figure 2
Illustration that schematically outlines the principle of the two-

point quadratic interpolation step-length formula
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frequency domain. The idea behind this scheme is to

reduce the redundancy of information in wavenumber

coverage as much as possible by selecting fewer

frequencies. This scheme depends on the maximum

effective offset presented in the surface seismic

survey. The larger the range of offsets, the fewer

frequency slices are required. Later, Boonyasiriwat

et al. (2009) extended this scheme to time-domain

FWI with the Wiener low-pass filter (Boonyasiriwat

et al. 2009). With this filter, the user-defined param-

eter is only the dominant frequency of the target

wavelet.

Here, we present an alternative frequency-band

selection scheme using the Wiener low-pass filter.

According to the idea of the separation of frequency

ranges in the multiscale strategy, seismic data and

wavelet must be decomposed at different scales (such

as different wavelength components), which helps

FWI to converge to a global minimum. Time-domain

FWI uses multiple frequencies simultaneously during

the inversion, which allows update a much wider

range of wavenumbers than using only a single

frequency at one time, as happens with frequency-

domain FWI. As a result, a strong redundancy in the

wavenumber domain is presented in the data. If the

range of the velocity values of the model is fixed, the

range of the wavelength components is determined by

the source wavelet spectrum, since the frequency

bandwidth can adjust the range of wavelength or

wavenumber (Sirgue and Pratt 2004). Given that low,

intermediate, and high frequencies correspond to

long, intermediate, and short wavelengths, respec-

tively, reducing the frequency redundancy is more

significant to produce effective inversion at each

scale. Therefore, we need decompose the data and

wavelet into different frequency bands to reduce such

redundancy. This inspires us to design a frequency-

band selection strategy based on the decomposition of

the source wavelet spectrum into different frequency

bands, so that adjacent frequency bands have less

redundant information in frequency to adapt to

wavelength coverage.

If we consider that the dominant amplitude of the

source spectrum is bounded by its frequency band-

width, i.e., half the maximum amplitude in the

frequency spectrum, the frequency components

whose amplitudes are smaller than half the maximum

amplitude are then considered to have insignificant

contributions to the recovery of wavelength. Figure 3

shows the amplitude spectra of the Ricker wavelet

with dominant frequency of 1.07, 4.85, and 22 Hz;

the dashed lines indicate half the maximum ampli-

tudes, respectively. As can be seen, these amplitude

spectra for adjacent frequency bands intersect just at

half the maximum amplitude for the higher frequency

band, thus giving rise to less redundancy in fre-

quency. In this example, the two small shaded regions

A and B illustrate the redundant information in

frequency that can be discarded. This is due to how

the seismic data are band-limited naturally. Each

frequency component of the data has a different

amplitude or strength, which results in a band-limited

range of the recovered wavelength components.

Strong frequency components of the data largely

contribute to the wavelength update, whereas weak

frequency components (especially at the low and high

ends of a frequency band) provide weak contributions

(Boonyasiriwat et al. 2009). Consequently, the

frequency-band selection strategy should make that

the overlapped region of wavelength recovered from
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Figure 3
Multiscale strategy for selection of frequency bands. The blue,

green, and red solid lines represent the amplitude spectra of the

Ricker wavelet with dominant frequency of 1.07, 4.85, and 22 Hz,

respectively; while the blue, green, and red dashed lines indicate

the half the maximum amplitude of each spectrum, respectively.

These amplitude spectra for adjacent frequency bands intersect just

at half the maximum amplitude for the higher frequency band.

These intersection points are marked in the illustration by their

respective spectral frequencies: 1.75, 7.94, and 36 Hz. Analo-

gously, the crossing points between two adjacent spectra are also

marked by their respective frequencies: 2.34 and 10.6 Hz. The two

small shaded regions A (around 2.3 Hz) and B (around 10 Hz)

illustrate the redundant information in frequency
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two consecutive frequency bands to be minimal. This

is equivalent to implement the strategy of Sirgue and

Pratt (2004) in time-domain.

Continuing with the example of the Ricker

wavelet, its frequency band can be determined by

two frequency points, i.e., fl;h ¼ cl;hf0, where f0 is the

dominant frequency of the target Ricker wavelet. At

half the maximum spectral amplitude, the lower

frequency point is set as fl ¼ clf0, while the higher

frequency point is set as fh ¼ chf0, being cl ¼ 0:482

and ch ¼ 1:637. The detailed deduction of these two

constants can be seen in Appendix 1 or the paper of

Wang (2015). Both frequency points define the

frequency bandwidth of the Ricker wavelet. To

proceed to an adequate frequency-band selection,

i.e., the frequency or wavelength information con-

tained in adjacent frequency bands be less redundant,

we set the equality

Ai�1 clf
i
0

� �
¼ Ai clf

i
0

� �
; ð26Þ

where f i
0 is the dominant frequency of the target

Ricker wavelet within the higher frequency band used

in the Wiener low-pass filter; Ai�1 and Ai are the

amplitude spectra of the two adjacent frequency

bands; i denotes the frequency band index. This

equality requires that the frequency spectrum of the

lower frequency band intersects the frequency spec-

trum of the higher frequency band just at the lower

frequency point f i
l ¼ clf

i
0 (of the higher frequency

band) that defines half the maximum spectral ampli-

tude. After deduction (see Appendix 2), the

frequency-band selection strategy is performed by the

following recursive formula:

f i�1
0 ¼ f i

0=c0; ð27Þ

where c0 ¼ 4:533 is a constant (see Appendix 2); f i�1
0

is the dominant frequency of the target Ricker

wavelet within the lower frequency band. This rela-

tionship expresses the recursive relation between the

dominant frequencies of the target Ricker wavelets

within the adjacent frequency bands, thus allowing

the effective frequency selection to implement the

multiscale strategy. With the help of the above for-

mula (27), the data are decomposed into several

frequency bands, so that the adjacent frequency bands

have less redundancy in wavelength or wavenumber

information. The gist of this scheme lies in

establishing the intersection between the lower and

higher frequency bands just at the point where the

amplitude is half the maximum amplitude of the

higher frequency band.

Usually, the seismic data and wavelet are decom-

posed into three wavelength intervals, i.e., long,

intermediate, and short components (sometime in

more wavelength components). In this study, we take

the dominant frequency within the highest frequency

band as a real wavelet. Figure 3 schematically

outlines the frequency-band selection strategy. The

dominant frequency of the real wavelet is 22 Hz. By

applying the above-depicted strategy, it can be

observed that the crossing point between the third

and second frequency bands is at 10.6 Hz just where

the amplitude is half the maximum amplitude within

the third frequency band. Analogously, the crossing

point between the second and first frequency bands is

at 2.34 Hz where the amplitude is half the maximum

amplitude within the second frequency band. The

small shaded domains show the overlapped regions A

(around 2.3 Hz) and B (around 10 Hz) between

adjacent frequency bands, which highlights that the

redundancy in frequency information is very small.

Figure 4 shows the wavelength coverage of the three

frequency bands (dominant Ricker frequencies of

1.07, 4.85, and 22 Hz) in a homogeneous medium

with compressional velocity value of 1.5 km/s. It is

clear that the wavelength coverage of the highest

frequency band is very narrow, while the one of the

lowest frequency band is relatively wide. The former

can provide a good constrain on the fine structure of

the model, while the latter can also describe the

macro or background model. In general, the wave-

length components within the three frequency bands

present less redundancy. The effectiveness of the

frequency-band selection strategy will be investigated

in the next section.

3. Numerical Examples

3.1. Effectiveness of the Frequency-Band Selection

Strategy

In this section, we first investigate the effective-

ness of the frequency-band selection strategy

proposed in this study compared with the strategy
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proposed by Boonyasiriwat et al. (2009). We adopt

the Marmousi model to perform this investigation.

The model is shown in Fig. 5a and consists of

383 9 142 grid-cells in the horizontal and vertical

directions, respectively. Both the horizontal and

vertical grid spacings are 10 m. Up to 383 seismic

receivers are evenly deployed on the surface with

fixed-spread acquisition geometry. The seismic

source is located at the depth of 0.05 km and is

modeled by a Ricker wavelet with dominant fre-

quency of 22 Hz. The synthetic data come from 38

shots separated by an interval of 0.1 km. The

recording length is 3.2 s and the sampling interval

is 0.8 ms.

Figure 5b shows a Gaussian smoothed version of

the Marmousi model that is taken as the initial

velocity model. The initial model is first computed by

smoothing the real velocity model with a 2D

Gaussian function of the vertical correlation and

horizontal correlation ranges of 0.5 km, and then by

implementing a 1D Gaussian function of the hori-

zontal correlation range of 1 km. It can be seen that

the initial velocity model (Fig. 5b) deviates substan-

tially from the real model. Therefore, it allows us to

investigate the effectiveness of the frequency-band

selection strategy. According to the definition of the

MAPE (Eq. 25), the MAPE related to the initial

model (Fig. 5b) is 10.8%.

Essentially, the strategy of Boonyasiriwat et al.

(2009) required the continuity of the vertical

wavenumber, whereas our strategy emphasizes the

less redundancy in adjacent frequency bands.

Although three frequency bands are preferable,

because the low, intermediate and high frequencies,

respectively, constrain the long, intermediate, and

short components of the model, enough low-fre-

quency information is unavailable in real data. To

mimic realistic cases, we just consider the interme-

diate- and high-frequency bands. Based on the

frequency-band selection strategy proposed in this

study (relation 27), now the seismic data and wavelet

can be decomposed into two scales with the Wiener

low-pass filter (Boonyasiriwat et al. 2009), namely:

(3.1–10.6 Hz) and (10.6–36 Hz). Correspondingly,

according to the strategy of Boonyasiriwat et al.

(2009), the seismic data and wavelet can also be

decomposed into two frequency bands, namely:

(2.5–8.5 Hz) and (10.6–36 Hz). Here, we use half

the maximum spectral amplitude to define the

frequency bandwidth of the seismic wavelet. We

recommend the readers going to the paper of

Boonyasiriwat et al. (2009) for implementation

details. In contrast, the two frequency bands obtained

by Boonyasiriwat et al. (2009) have a frequency gap

(i.e., jumping from 8.5 to 10.6 Hz), while our strategy

produces two continuous frequency bands.
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Figure 4
Wavelength coverage of three frequency bands (dominant frequen-

cies of 1.07, 4.85, and 22 Hz) in a homogenous medium with

compressional velocity of 1.5 km/s

(a)

(b)

Figure 5
Marmousi model. a Real velocity model; b a Gaussian smoothed

version of the Marmousi model as the initial velocity model. The

dashed gray line represents a cut for further analysis
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Furthermore, the strategy of Boonyasiriwat et al.

(2009) adopts more unrealistic low-frequency infor-

mation (2.5 Hz) than our strategy. As this strategy

repeatedly uses the low-frequency components of the

data in the inversion, some frequency components

overlap is allowed. The overlapped region of the

frequency bands generated by our strategy is very

small, so that it can be ignored (Fig. 3).

Based on the two frequency-band selection

strategies mentioned above, we carry out the time-

domain full waveform inversion with the Marmousi

model. Here, we adopt the L-BFGS method as

inversion method and the Direct as step-length

formula. Throughout this paper, the stopping criterion

is that the relative change rate in the objective

function value is less than 0.0001, or that the number

of iterations (at each scale or frequency band)

exceeds 400. Because the inversion process may be

unstable when the initial velocity model deviates far

from the real model or the data are contaminated by

noise, and hence, 20% increase in the objective

function value is allowed.

The inverted velocity models obtained by FWI

with different frequency-band selection strategies are

shown in Fig. 6. From left to right, we display the

inverted results provided by each one of the two

frequency-band selection strategies, while from top to

bottom, we show the results concerning the first and

second frequency scales, respectively. Because the

frequency-band selection strategy of Boonyasiriwat

et al. (2009) uses lower frequency information than

the strategy presented in this study (Eq. 27), there-

fore, the inverted result obtained by the former has a

slightly lower resolution than that of the latter at the

first frequency band. Thus, the former generates a

more accurate background velocity model than the

latter. Intuitively, both strategies yield almost iden-

tical high-resolution results at the second frequency

band. To compare their accuracy, we calculate their

MAPEs. The MAPEs corresponding to the final

results obtained by the two strategies are 5.817 and

6.258%, respectively. Compared with the MAPE in

relation to the initial model (10.8%), the MAPEs

associate with the inverted results reveal a significant
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Figure 6
Multiscale velocity models obtained by FWI with different frequency-band selection strategies. The initial velocity model is shown in Fig. 5b.

From left to right inverted results provided by the strategies of Boonyasiriwat et al. (2009) and proposed in this study operating with two

frequency bands (from top to bottom a–b and c–d, respectively). The inversion method is the L-BFGS method. The step-length formula is the

direct method
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decrease, which demonstrates the effectiveness of the

frequency-band selection strategy proposed in this

study. Although the frequency-band selection strat-

egy of Boonyasiriwat et al. (2009) obtains a slightly

more accurate result, it uses unrealistic low-fre-

quency information.

3.2. Analyzing Distinct CG Update Versions

As we already indicated, at present, we have eight

possible options to choose the update parameter b for

applying the CG method (Eqs. 8a–h). Here, with the

purpose of investigating their respective behaviors in

the context of FWI, we taking advantage of the

previously synthesized shot gathers from the Mar-

mousi model reproduced in Fig. 5a. In the inversion

process, we adopt the Direct as our step-length

formula. In the following sections, we always adopt

the frequency-band selection proposed in this study to

decompose seismic data and wavelet by two fre-

quency bands.

3.2.1 Noise-Free Data

The inverted velocity models obtained by FWI with

distinct versions (eight update parameters) of the

nonlinear CG method are shown in Fig. 7a–h. The

acronym on the top-left corner of each image makes

reference to the inversion with the used CG method

for computation. In this experiment, the basic algo-

rithm is completely identical except different

nonlinear CG update parameters. This means that

the smaller the number of iterations, the higher the

computational efficiency. Obviously, the solution

contributed by the LS has a slightly lower resolution,

whereas the DY severely overestimates the deeper

parts of the model. To confirm this point, the velocity

profiles at the horizontal location of 2.5 km are

shown in Fig. 8. It can be seen that the velocity

profile obtained by the DY always focuses on wrong

spatial position, while the profile obtained by the LS

always has smaller amplitude. In contrast, the other

versions obtain comparatively high-resolution results,

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7
Multiscale velocity models obtained by FWI with different versions (eight update parameters) of the nonlinear CG method. The initial

velocity model is shown in Fig. 5b. The acronym on the top-left corner of each image makes reference to the inversion with the nonlinear CG

method used for computation (see the text in Sect. 2.2). The inversion method is the L-BFGS method. The step-length formula is the direct

method
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which recovery the fine structure of the Marmousi

model quite faithfully. The high-velocity layers in the

bottom-left corner of the inverted models are slightly

distorted, which may be due to inaccurate initial

velocity model (marked by arrows in the illustration).

To quantitatively check the computational effi-

ciency and accuracy of different versions of the

nonlinear CG method, we use the number of itera-

tions to analyze efficiency and the MAPE (Eq. 25) to

analyze the model misfit related to each of the

implemented algorithms. Figure 9a shows the value

of the respective error functions (E) versus the

number of iterations (in parentheses, top-right inset).

One can observe that the FR converges fastest

followed by the HS and PRP, while the LS is costliest

followed by the CD and HZ (Fig. 9a). The DY and

HZ1 reveal comparable mediate convergence. Even

though the number of iterations reaches 400, the LS

still does not converge. It demonstrates the ineffi-

ciency of the LS (Fig. 9a). In addition, the objective

function values corresponding to some versions are

oscillating at the beginning of each frequency band,

such as the DY and HZ, which may be due to the less-

accurate initial velocity model.

Figure 9b shows the MAPEs in correspondence

with the inverted models depending on the version of

the nonlinear CG method. It can be seen that the CD,

HS, and PRP are comparatively accurate followed by

the FR, HZ1, LS, and HZ, while the DY is the most

inexact relatively because of focusing on wrong

spatial location. In general, compared with the MAPE

related to the initial model (10.8%), the MAPEs that

associate with the inverted results are significantly

decreased, which illustrates the effectiveness of the

eight versions of the nonlinear CG method. When

taking jointly efficiency and accuracy into consider-

ation, it is not difficult to conclude that the HS, CD,

and PRP are more efficient than the other versions. In
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Figure 8
Velocity-depth profiles concerning the Marmousi model and with

reference at the horizontal location of 2.5 km (dashed gray line in

Fig. 5). Gray line denotes the real velocity model, while other lines

represent inverted results obtained by the eight versions of the

nonlinear CG method, respectively
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addition, this experiment also proves the effective-

ness of the frequency-band selection strategy

proposed in this study.

3.2.2 Noisy Data

In the previous experiment, we draw the conclusion

just from the noise-free data. Unfortunately, the data

are always contaminated by stochastic or/and coher-

ent noise in real cases. To check the robustness of the

distinct versions of the nonlinear CG method, we

added Gaussian white noise to the data set generated

from the Marmousi model to achieve a significantly

decreasing signal-to-noise ratio (SNR) of 20 dB. The

acquisition geometry and physical parameters are the

same as in Sect. 3.1.

Figure 10 shows the inverted velocity models

obtained by FWI with distinct versions (eight update

parameters) of the nonlinear CG method. It can be

observed that the DY still overestimates the deeper

parts just as that obtained in the noise-free data. In

general, the CD and LS generate relatively low-

resolution images, while the other versions obtain

comparatively high-resolution results. At the first

glance, it is difficult to distinguish from each other.

To evaluate their efficiency and accuracy, Fig. 11

shows the convergence curves and MAPEs in corre-

spondence with each nonlinear CG method.

Figure 11a shows the convergence curves. Obvi-

ously, the LS still converges slowest followed by the

FR, HZ, and HZ1. The HS, CD, and DY converge

after a small number of iterations. The PRP reveals a

moderate convergence. In addition, the inversion with

noisy data is prone to instability compared with the

convergence curves from the noise-free data (Fig. 9).

Although the objective function values are signifi-

cantly oscillating within the first 100 iterations, they

eventually decrease to a comparable level. In partic-

ular, the objective function value of the DY has the

largest increase within first 100 iterations. This

illustrates that it is possible to obtain a more accurate

result at the cost of allowing local increase in the

objective function. In this study, we allow 20%

increase in the objective function.

To compare the respective accuracy of each

version, we show the MAPEs in Fig. 11b. The CD,

HS, and PRP are comparatively accurate followed by

the LS, HZ1, HZ, and FR, which is similar to the

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10
Same as Fig. 7 using noisy data with signal-to-noise ratio (SNR) of 20 dB
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noise-free case. The DY is still the most inaccurate. In

general, the MAPEs related to the noisy data

(Fig. 11b) are consistently larger than those obtained

with noise-free data (Fig. 9b). It indicates that the

noise can prevent the inversion from converging to a

more accurate result. Once again, when taking jointly

efficiency and accuracy into consideration, it can be

concluded that the HS, CD, and PRP are relatively

efficient among all versions.

3.3. Comparison of Step-Length Formulas

with Noise-Free Data

In this section, we investigate the behaviors of the

three step-length formulas given previously (Eqs. 16,

21, and 26), i.e., the so-called direct method (Direct),

the parabolic search method (Search), and the two-

point quadratic interpolation method (Interp). In

terms of the inversion methods, the L-BFGS method

is the well-known most efficient one among the SD,

CG, and L-BFGS methods; therefore, we adopt it as

our inversion method in the following sections.

Throughout the following numerical experiments,

we adopt the same stopping criterion defined in

Sect. 3.1. To explore the sensitivity of the three step-

length formulas to the complexity of the model, we

first consider both a simple structure in geometry and

velocity (like a basin-shaped model) and a more

complex one (for instance, the Marmousi model) with

noise-free data.

3.3.1 Basin-Shaped Model

First, we designed a basin-shaped model as real

model (Fig. 12a), from which we constructed a

smoothed version as the initial model (Fig. 12b) with

the MAPE of 8.425%. The model consists of

321 9 201 grid-cells in the horizontal and vertical

directions, respectively. Both the horizontal and

vertical grid spacings are 10 m. Up to 321 seismic

receivers are evenly deployed on the surface with

fixed-spread acquisition geometry. The seismic

source is located at the depth of 0.05 km and is

modeled by a Ricker wavelet with dominant fre-

quency of 30 Hz. The synthetic data are acquired

from 32 shots separated by an interval of 0.1 km. The

recording length is 2 s and the sampling interval is

1 ms. As before, based on the frequency-band

selection strategy proposed in this study (relation 27),

the data and seismic wavelet are decomposed into

two scales with the Wiener low-pass filter

(Boonyasiriwat et al. 2009), namely: (4.3–14.4 Hz)

and (14.4–49.1 Hz).

Figure 13 shows the multiscale velocity models

recovered from the smoothed basin-shaped model

using the L-BFGS method with different step-length

formulas. From left to right, we display the inverted

results provided by each of these formulas, while

from top to bottom, we show the results concerning

the first and second frequency scales, respectively. As

can be seen, the results obtained with any of these
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formulas (Direct, Search, and Interp) are perfectly

comparable. Hence, it is difficult to distinguish from

each other intuitively. In particular, the two ends of

the third layer (deepest) are somewhat raised (such as

is marked by arrows in the illustration) due to the

poor initial velocity model and insufficient data

coverage.

To appreciate the efficiency and accuracy of the

three step-length formulas, we resort to the respective

error (E) functions versus the number of iterations

and also to the MAPEs. Figure 14 shows these error

functions. The numbers in parentheses denote the

total number of iterations performed in each case.

Both the Direct and Interp converge to almost an

identical minimum after smaller number of iterations,

while the Search needs more number of iterations to

converge. The MAPEs corresponding to the final

inverted results obtained by the three step-length

formulas are 3.577, 3.185, and 3.166%, respectively.

The MAPEs have been significantly decreased, which

demonstrates that the model is well reconstructed. It

can be observed that both the Search and Interp

reveal similar accuracy. In contrast, the Direct is

slightly less accurate. When taking efficiency and

accuracy into consideration, the Interp is the most

efficient algorithm assuming a simple model.

3.3.2 Marmousi Model

To investigate the sensitivity of the three step-length

formulas (Direct, Search and Interp) to the complex-

ity of the model, we carry out the same numerical test

starting from the Marmousi model. The real and

initial velocity models are those already shown in

Fig. 5. The acquisition geometry and physical param-

eters are identical to those in Sect. 3.1.

Figure 15 shows the multiscale velocity models

obtained using the L-BFGS method with different

step-length formulas (Direct, Search and Interp).

From left to right, we display the inverted results

provided by these step-length formulas, while from

top to bottom, we show the results related to the first

and second frequency scales, respectively. It is easy

to distinguish that the result provided by the Interp

exhibits a slightly lower resolution at the second

frequency scale when compared with those obtained

by the Direct and Search. In general, the results

obtained with the three step-length formulas can

depict the fine structures integrating the Marmousi

model at the second frequency band.

Again, the respective error functions and the

MAPEs allow us to appreciate the efficiency and

accuracy provided by the three step-length formulas.

Figure 16 shows the error function (E) versus the

number of iterations. The numbers in parentheses

denote the total number of iterations. Now, the

Search still needs the maximum number of iterations

to converge, while the Interp needs least iterations to

meet the predefined stopping criterion. In contrast,

the Direct lies between them. The MAPEs obtained

by the three step-length formulas are 6.258, 6.139,

and 6.298%, respectively. Compared with the MAPE

in relation to the initial model (10.8%), the Marmousi

model has successfully been reconstructed. In this

Marmousi model, both the Direct and Interp yield

comparable results, while the Search obtains a
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Basin-shaped model. a Real velocity model; b initial velocity

model

1998 Y. Liu et al. Pure Appl. Geophys.



slightly more accurate result at the cost of more

number of iterations.

In summary, the results obtained with the three

step-length formulas and two very different models,

with remarkable differences as to its structural com-

plexity, reflect the different behaviors of the three step-

length formulas. Keeping the efficiency and accuracy

in mind, the Interp is more efficient followed by the

Direct even when dealing with a complex model, while

the Search is slightly less efficient, because it needs

more number of iterations to converge.

3.4. Comparison of Step-Length Formulas

with Noisy Data

In all the previous examples, we have handled

noise-free data. In this section, we investigate the

robustness of the three step-length formulas with

noisy data.
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Figure 13
Multiscale velocity models recovered from the basin-shaped model using the three step-length formulas. From left to right inverted results

provided by the direct method (Direct), the parabolic search method (Search), and the two-point quadratic interpolation method (Interp)

operating with two frequency bands (from top to bottom a–b, c–d and e–f, respectively). The initial basin-shaped model is shown in Fig. 12b.

The inversion method is the L-BFGS method
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Figure 14
Error functions (E) versus the number of iterations in relation to the

basin-shaped model and the used step-length formulas, namely: the

direct method (Direct), the parabolic search method (Search), and

the two-point quadratic interpolation method (Interp). The numbers

in parentheses (top-right inset) give the total number of iterations.

The initial basin-shaped model is shown in Fig. 12b. The inversion

method is the L-BFGS method
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3.4.1 Basin-Shaped Model

Here, we added Gaussian white noise to the data set

generated from the basin-shaped model to achieve a

decreasing signal-to-noise ratio (SNR) of 30 dB. The

acquisition geometry and physical parameters are the

same as in Sect. 3.3.1.

Figure 17 shows the multiscale velocity models

obtained using the three step-length formulas and

noisy data. In general, the inverted results obtained

with the noisy data have slightly lower resolution

compared to those obtained with the noise-free data

(Fig. 13). In addition, the results obtained with the

noisy data are clearly noisier, which is due to the

travel-time mismatches caused by Gaussian white

noise. Intuitively, the results obtained by the three

step-length formulas are comparable at each fre-

quency band. This supports that the three step-length

formulas are robust or partly insensitive to Gaussian

white noise.

To compare their efficiency and accuracy, we also

display the error functions and the MAPEs in relation

to each step-length formula. Figure 18 allows appre-

ciating the efficiency and accuracy of the three step-

length formulas through the respective error functions

(E) versus the number of iterations. Compared with

Fig. 14, the values of the objective function increase

from 5 to about 60 at least initially, although they

decrease quickly to a comparable value after a

determined number of iterations. Within the first 25

iterations, the objective function values of the Direct

and Interp are oscillating. In addition, the number of

iterations becomes smaller due to the existence of

noise. Like the tests in Sect. 3.3, both the Direct and
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Figure 15
Multiscale velocity models recovered from the Marmousi model using the three step-length formulas. From left to right inverted results

provided by the direct method (Direct), the parabolic search method (Search), and the two-point quadratic interpolation method (Interp)

operating with two frequency bands (from top to bottom a–b, c–d and e–f, respectively). The initial velocity model is shown in Fig. 5b. The

inversion method is the L-BFGS method
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Marmousi model (Fig. 5) and the used step-length formulas,

namely: the direct method (Direct), the parabolic search method

(Search), and the two-point quadratic interpolation method (In-

terp). The numbers in parentheses (top-right inset) give the total

number of iterations. The initial Marmousi model is shown in

Fig. 5b. The inversion method is the L-BFGS method
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Interp can converge after smaller number of itera-

tions, while the Direct needs slightly more iterations

to meet the predefined stopping criterion. In this

experiment, the MAPEs in correspondence with the

final inverted results when using the three step-length

formulas are 3.946, 3.960, and 4.042%, respectively.

For this noisy data, both the Direct and Search

generate more accurate results than the Interp. In

contrast, the Direct is more efficient than the Search

and Interp, because it needs a relatively small number

of iterations and obtains a more accurate result.

3.4.2 Marmousi Model

We continue check the robustness of the three step-

length formulas in a complex model with Gaussian

white noise data, i.e., the Marmousi model. Thus, we

adopt the noisy data set used in Sect. 3.2. The

acquisition geometry and physical parameters are the

same as in Sect. 3.1. In this experiment, we still

select the L-BFGS method as inversion method.

Figure 19 shows the multiscale velocity models

obtained using the three step-length formulas and

noisy data. The results obtained by the three step-

length formulas generate comparable high-resolution

results. This supports that the three step-length

formulas are still robust for noisy data even in a

complex model. In general, compared with Fig. 15,

the results are now noisier at each frequency scale, as

expected, which is due to the travel-time mismatches

caused by Gaussian white noise. In particular, the

shape of the gas and oil cap obtained by the Interp
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Same as Fig. 13 using noisy data with signal-to-noise ratio (SNR) of 30 dB
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(Fig. 19f) is slightly less clear than those obtained by

the Direct and Search (Fig. 19b, d).

Figure 20 allows comparing the efficiency and

accuracy of the three step-length formulas through

the respective error functions (E) versus the number

of iterations. Compared with Fig. 16, the values of

the objective function increase from 55 to more than

160 at least initially. In addition, the objective

function values of the Direct and Interp are oscillat-

ing within the first 20 iterations, while the objective

function values of the Search are consistently

decrease. Once again, the number of iterations

becomes smaller, because noise prevents the objec-

tive function value from further decreasing. The

MAPEs corresponding to the final inverted results

when using the three step-length formulas are 7.521,

7.887, and 7.772%, respectively. In general, the

results obtained with the noisy data (Fig. 19) are

consistently inaccurate than those obtained with the

noise-free data (Fig. 15). In particular, the accuracy

of the Search and Interp is comparable. Like the tests

with the basin-shaped model, the Direct is more

efficient than the Search and Interp because of

relatively small number of iterations and high

accuracy.

In summary, the above tests performed with

different step-length formulas demonstrate that the

Interp is more efficient from the viewpoint of the

computational efficiency and accuracy with noise-

free data, while the Direct is more efficient with noisy

data. The Search is less efficient than both the Direct

and Interp, because it always needs more number of

iterations and needs at least two times extra forward

modeling to estimate the optimum step-length.

4. Conclusions

First, we have implemented an alternative fre-

quency separation strategy that aims at reducing the

redundant information in frequency to adapt to the

wavelength or wavenumber coverage. Then, we have

performed a variety of numerical experiments with
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the target of analyzing the effects of the update

parameters for the nonlinear conjugate gradient

method and three commonly used step-length for-

mulas on FWI. We have analyzed up to eight

different versions of the nonlinear conjugate gradient

(CG) method, each distinguished by its respective

update parameter. With noise-free and noisy data, the

comparison of the inverted results using all these

versions demonstrates that the HS, CD, and PRP

nonlinear CG methods are more efficient among these

versions.

Finally, three commonly used step-length for-

mulas for FWI have been tested, identified as the

direct (Direct) method, the parabolic search (Search)

method, and the two-point quadratic interpolation

(Interp) method. For noise-free data, the numerical

tests prove that the Interp is more efficient than the

others both with simple and complex models, while

the Search is slightly less efficient, because it con-

verges very slowly, and the Direct lies between

them. The three step-length formulas were also

applied to data contaminated by Gaussian white

noise to obtain high-resolution images, thus proving

the robustness of all of them. In general, the noisy

data generate less accurate results compared to the

noise-free data. For noisy data, the Direct is more

efficient than the others both with simple and com-

plex models, while the Search is still less efficient,

because it needs more number of iterations, and the

Interp lies between them. When the initial model

deviates far from the real model or the data are

contaminated by noise, the objective function values

of the Direct and Interp are oscillating at the

beginning of the inversion.
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Appendix 1

Frequency Width of the Ricker wavelet

The expression of the Ricker wavelet in time

domain is as follows:

R tð Þ ¼ 1 � 2p2f 2
0 t � t0ð Þ2

� 	
exp �p2f 2

0 t � t0ð Þ2
� 	

;

ð28Þ

where t is time; t0 is the delayed time; f0 is the

dominant frequency. The Fourier transform of the

Ricker wavelet is as follows:

F xð Þ ¼
ffiffiffi
p

p
x2

x3
c

exp �x2

x2
c

þ ixt0

� �
; ð29Þ

where x is the angular frequency; xc ¼ 2pf0 is the

angular frequency corresponding to the maximum

amplitude. The amplitude spectrum is

A xð Þ ¼
ffiffiffi
p

p
x2

x3
c

exp �x2

x2
c

� �
: ð30Þ

To determine the frequency width of the Ricker

wavelet, we take the first derivative of (29) with

respect to x, and after denoting the maximum

amplitude of the Ricker wavelet by A xcð Þ, we obtain

A xð Þ ¼ 1

2
A xcð Þ: ð31Þ

Substituting (31) into (30), we have

x2

x2
c

exp �x2

x2
c

� �
¼ 1

2
e�1; ð32Þ

The solution of (32) is equivalent to the root of the

following equation:
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x2 exp �x2
� �

¼ 1

2
e�1; ð33Þ

where x ¼ x=xc and ‘e’ is Euler’s number. The

solution of (33) leads to the well-known Lambert W

function (Lambert, 1758), and with the help of the

graphical method (see Fig. 21), the two roots of (33)

are

xl=xc ¼ cl

xh=xc ¼ ch

(
; ð34Þ

where cl ¼ 0:482 and ch ¼ 1:637 are two constants.

These two limit frequencies define the frequency

width of the Ricker wavelet.

Appendix 2

Frequency Band Selection Strategy

According to multiscale strategy, the seismic data

and wavelets are decomposed by scale. To proceed to

an adequate frequency-band selection, so that the

frequency or wavelength information contained in

adjacent frequency bands is less redundant, we set the

equality

Ai�1 clf
i
0

� �
¼ Ai clf

i
0

� �
; ð35Þ

where cl is the constant given in Appendix 1; f i
0 is the

dominant frequency of the target Ricker wavelet

within the higher frequency bands; Ai�1 and Ai are

the amplitude spectra of the target Ricker wavelet

within the lower and higher frequency bands,

respectively. The subscript or superscript i denotes

the frequency band index. Substituting (30) into (35),

we obtain the following equation:

xi
c

xi�1
c

� �3

exp �c2
l

xi
c

xi�1
c

� �2
 !

¼ exp �c2
l

� �
; ð36Þ

where xi�1
c and xi

c are the most energetic angular

frequencies corresponding to the lower and higher

frequency bands, respectively. The solution of (36) is

equivalent to the root of the following equation:

x3 exp �c2
l x2

� �
¼ exp �c2

l

� �
; ð37Þ

where x ¼ xi
c

xi�1
c

. Also with the help of the graphical

method (see Fig. 22), the two roots of (37) and,

therefore, of (36) are

xi
c=x

i�1
c ¼ c1;2; ð38Þ

where c1 ¼ 1 and c2 ¼ 4:533. Obviously, c2 is the

desired solution, so that

f i�1
0 ¼ f i

0=4:533: ð39Þ

Here, f i�1
0 is the dominant frequency within the

lower frequency band and f i
0 is the dominant

frequency within the higher frequency band. This

relationship expresses the recursive relation between

dominant frequencies of the target wavelet within
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Figure 21
Lambert function (solid line). The two circles indicate the points

intersected by the horizontal dashed line that marks the value of

e�1=2, which defines the frequency bandwidth of the Ricker

wavelet
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x3 exp �c2

l x2
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function (solid line). Here, the value cl corresponds

to the lower frequency point of the two points that define the

frequency bandwidth of the Ricker wavelet (see Fig. 21). The two

circles indicate the points intersected by the horizontal dashed line

that marks the value of exp �c2
l

� �
, which are the two roots of the

equation x3 exp �c2
l x2

� �
¼ exp �c2

l

� �
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adjacent frequency bands, thus allowing the correct

frequency selection to implement the multiscale

strategy.
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