Xu T, Xu G M, Gao E G, et al. Block modeling and shooting ray tracing in complex 3-D media. Chinese J. Geophys. (in Chinese), 2004, 47(6):1118 ~ 1126

三维复杂介质的块状建模和试射射线追踪

徐 涛¹ 徐果明¹ 高尔根¹ 朱良保¹ 蒋先艺²

1 中国科学技术大学地球和空间科学学院,合肥 230026 2 中国石油集团东方地球物理公司研究院,涿州 072751

摘 要为了解决三维复杂介质的射线追踪,本文改变了传统的三维层状地层的建模描述方式,提出了块状结构的建模描述方法,结合三角形面片来描述地质界面,可以构造非常复杂的三维地质模型.为了满足射线追踪的需要,本文对模型界面内的法向量进行光滑处理,光滑后的法向量在界面内是连续变化的.在块状模型的基础上,本 文运用三角形的面积坐标,提出了几种试射角度的修正方法:细分三角形法、分割三角形法和子三角形法,计算表明子三角形法最好.文中给出了三维块状模型和射线追踪实例.

关键词 射线追踪 块状建模 三角形面片 法向量 子三角形法

文章编号 0001 - 5733 (2004) 06 - 1118 - 09 中图分类号 P631 收稿日期 2003 - 09 - 19,2004 - 05 - 27 收修定稿

BLOCK MODELING AND SHOOTING RAY TRACING IN COMPLEX 3-D MEDIA

XU Tao¹ XU Guo-Ming¹ GAO Er-Gen¹ ZHU Liang-Bao¹ JIAN G Xian-Yi²

1 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2 Geophysical Research Institute, Bureau of Geophysical Prospecting, CNPC, Zhuozhou 072751, China

Abstract We propose block modeling to suit complex 3-D media. Instead of layers, geological media are regarded as an aggregate of geological blocks, which have their own attributes, such as shape, size, density and seismic wave velocity. The structure of blocky model is Body Block Interface Point Coordinate. We construct interfaces in the model with triangles, which fits most complex media. For normal vectors change abruptly across the linked boundaries, normal vectors of triangles are smoothed to suit ray tracing. We present some methods for shooting ray tracing in 3-D: triangle-subdivision, triangle-division and subtriangle methods. Our calculation indicates that the subtriangle method is most efficient. We present real cases for some complex models and ray tracing results on these models.

Key words Ray tracing ,Block modeling , Triangle ,Normal vector ,Subtriangle method.

基金项目 国家自然科学基金资助(40374010).

作者简介 徐 涛,男,1978年生,2004年毕业于中国科学技术大学地球和空间科学学院地球物理专业,获博士学位,现为中国科学院地质与地球物理所博士后,主要研究方向为三维复杂介质的块状建模和快速射线追踪. E-mail:xutaoustc@ustc.edu

1 引 言

地震波的射线追踪方法在地震定位、地球物理 层析成像、地震勘探资料的偏移处理等中起着极其 重要的作用,射线追踪的路径精度和计算速度,直接 决定着资料处理的质量和计算速度.因此,研究快速 而精确的射线追踪方法,在地球物理领域有特别重 要的实际意义.

传统的射线追踪方法有试射法^[1~8]和弯曲 法^[9~16],后来发展了波前法^[17~19]、图像理论法^[20] 和模拟褪火方法^[21,22]等. Cerveny et al. ^[23~25]对射 线追踪方法进行了很好的总结. 与其他方法相比,试 射法精确性高,在全面搜索和适应复杂地质模型等 方面有很大优势,是两点追踪问题的一种重要方法.

Langan et al.^[5]采用网格剖分方法,设网格块 内速度线性变化,对程函方程积分二次,求得相应的 介质中射线路径的位置、方向及走时对射线弧长的 表达式,当试射射线遇到网格分界面时,利用 Snell 定律确定射线的透射或反射.在此基础上,马争鸣 等^[2]提出了二步法射线追踪方法:徐昇等^[3]提出了 射线追踪的微变网格法;杨长春等^[4]提出了适于复 杂地质模型的三维射线追踪方法. Sambridge et al.^[6]对连续介质进行数值积分获得试射路径. Virieux et al.^[8]对介质进行平行六面体的微元划 分,在微元结构内,速度场看成梯度场,射线的微扰 路径和微扰走时由数值积分获得. Sun^[7]从射线方 程出发,沿着一条近似路径积分获得对射线路径的 一次试射修正,逐次在修正的路径上积分使射线收 敛到接收器;Sun 对介质进行矩形网格划分(三维为 正方体),网格点数目可以控制射线路径光滑部分的 数目,对精度要求越高,网格点数目需要越多,追踪

的速度就越慢.

试射射线追踪中,对发射角的修正是关键,它影 响到试射射线能否快速收敛到接收点处,对三维问 题如何修正发射角,尤其显得重要,上述工作在这方 面没有做详细的研究.

2 块状地质模型的描述

射线追踪方法建立在一定的地质模型基础上. 地质模型的描述,一般采用网格划分(三维为正方体^[7]、平行六面体^[8]等)和层状结构描述.波前法、 图像理论法和模拟褪火方法等都是把地质模型网格 化,网格内的介质一般看成是均匀速度或常梯度速 度.弯曲法一般建立在层状结构模型上.试射法在层 状模型和网格划分模型中均有应用.

网格划分近似模拟地下介质,网格节点越多,模型描述越精确.基于网格划分模型上的射线追踪大都采取近似处理,射线路径必须经过网格节点.计算精度和计算量取决于网格节点的多少(至少正比于[*N*1g*N*])^[20].取三维地质模型大小为 5000m × 5000m ×5000m,网格间距为 10m,网格节点数则达到 1.25 ×10⁸,要使计算精度更高,则要求更小的网格,因此该方法主要受计算机内存和运算速度的影响.而野外的实际工作,如地震数据采集和三维设计,则要求很快的射线追踪结果.网格划分的模型描述以及建立在该模型基础上的射线追踪的适用性有很大的限制,基本上不适用于野外勘探.

地下介质在形成时一般是水平层状分布. 层状 模型是普遍使用的介质模型,它要求每个界面都从 模型体的一侧边界贯穿到另一侧边界,分界面按顺 序由上到下依序排列,不得交叉. 层状模型的界面一 般采取连续函数,如 B 样条曲面描述^[10].

图 6 (a) 逆断层模型和速度结构以及射线追踪结果(图中数字的单位:km/s)和(b) 相应的射线走时图 (y 代表接收器在地表的纵坐标)

Fig. 6 (a) The velocity structure and ray tracing results of the reverse fault model, and (b) is the associated travel times

图 7 (a) 组合模型及速度结构 (图中数字的单位 :km/s) 和 (b) 射线追踪结果 (透镜体的上表面定义成反射面) Fig. 7 (a) The combination model and velocity structure ,and (b) ray tracing results based on the model (The upper interface of the lens is defined as the reflected interface)

图 8 (a) 复杂模型上的射线追踪结果,黄色"层面 "定义为反射面,透明部分为起伏地表;(b) 相应的射线走时图 Fig. 8 (a) Ray tracing result based on the complex model. The semitransparent interface is the fluctuant surface. The yellow "layer is defined as the reflected interface. (b) is the associated travel times

2

对于简单的地质模型,层状结构描述直观,射线 追踪编程简单,计算快速.射线追踪一般按以下步骤 处理:射线从起始点出发(向下),依次穿过地层,直 到遇到指定的反射界面,再按照相反的地层顺序返 回到接收器.但对于逆断层模型,如图 1a 所示,以 *A* 点为例,*A* 点右边附近的射线向下发射,会从第二 层穿透过第三层,接着从第三层穿透过第二层.射线 反复穿过同一透射面,因此不符合层状结构射线追 踪的一般步骤.

层状结构描述逆断层,传统的解决方法是构造 虚界面.虚界面是一种假想的界面,两边介质的属性 是一致的,构造方法如图 1b 所示,延伸界面 3 到左 边界,界面 7 到右边界,且插入虚界面 CD.图中显 示插入虚界面后的地层的顺序,可以看出,很多界面 存在着重叠.对于更复杂的模型,如图 2 所示的三维 模型,建模中划分界面就更繁琐,很难建立层状模 型,用计算机自动建模就更困难,射线追踪更是头绪 繁多,很难正确而有效地进行射线追踪.

针对上述困难,本文提出块状结构的建模方案, 并在此基础上研究了几种试射角度的修正方法进行 快速射线追踪.

2.1 块状模型的结构

实际地质结构经过积压、切割等地质运动后,由 层状变成了十分复杂的结构,如图 2 所示,如果应用 块状介质模型描述则要容易得多.在块状结构模型 中,三维地质体被看成是由多个地质块组成的集合 体.每个地质块有自己的地震属性,如形状、大小、密 度和地震波速等,并与其他的地质块存在相邻的边 界.

Goystdal et al.^[26]首先提出了三维块状建模的 概念,地质块采用并集、交集、余集和补集等集合运 算的操作来构造,地质块显示很不直观.Pereyra^[11] 在此基础上发展了块状模型描述的技术,块体更加 直观和自然^[11].他们的模型界面为 Coons 曲面或 B 样条曲面等,限制了块状模型的描述,这主要是用来 解决尖灭、蘑菇云等地质模型上的射线追踪,不能够 针对一般复杂的三维地质模型.

徐果明等^[27]提出了二维复杂介质的块状构造: 面 元 边 段 点的描述方式.在三维块状构造 中,我们对地质体的描述采取体 块 面 点 坐 标的层次结构.对于研究的三维介质,我们称之为地 质"体",地质体是由若干个属性不同的地质"块"组 成,地质块是被若干个地质界"面"隔开,界面的两侧 应为不同的块.地质界面是由若干个离散的地质点 来描述,地质点由地质数据提供的坐标值来决定.这 样的层次结构下地质体将被完全确定.

在地质块内,介质看成是均匀的,各自具有相同 的地震属性(密度、地震波速等),所以射线路径在地 质块内是一条直线.非均匀介质,可以划分成许多小 的地质块,在每个块内,介质看成是均匀的.不同的 地质块尺寸大小可以不同,且不受形状的限制.根据 实际地质条件的需要,结构变化较小的空间采用较 大、较少的块来描述,相反,则采用较小、较多的块来 描述,这与空间网格点描述有很大的不同,后者的尺 寸大小基本相同.

本文块状结构的描述和 Pereyra^[11]有相似性, 最大的不同在于模型界面的描述.

2.2 模型界面的描述

理论上块状结构可以构造任意复杂的三维地质 体.曲面的描述(面 点)是块状结构描述中的关键, 即如何用给定的离散点构造地质界面.考虑到复杂 介质上快速射线追踪的需要,曲面的描述必须满足 以下条件:(1)可以适应非常复杂的地质结构,这是 前提条件;(2)地质曲面有很好的光滑拼接,不能存 在空隙,否则会导致不正确的射线追踪;(3)必须快 速准确地找到一条射线(直线)和地质面的交点.

本文分别试用了参数形式的 Coons 曲面、Bezier 曲面、B 样条曲面和三角形面片来构造地质面.

Coons 曲面是对 *n* × *m* 空间点阵进行插值获 得,曲面通过给定的点,可以看作是 Hermite 插值的 推广.

给定 $(n+1) \times (m+1)$ 空间点阵 $P_{ij}(i=0,1, ..., n; j=0,1, ..., m)$,可以得到 $n \times m$ 次 Bezier 曲面

$$P(s, t) = \prod_{\substack{i=0 \ j=0}}^{n} B_{i,n}(s) B_{j,m}(t) P_{ij},$$

(0 s, t 1), (1)

式中 $B_{i,n}(s)$ 和 $B_{j,m}(t)$ 为 n 次和 m 次 Bernstein 基 函数. Bezier 曲面控制、表示方便,有很好的空间几 何性,如角点插值性质、凸包性、分割定理等,但是控 制点较多时,曲面的阶数较高,而且 Bezier 曲面不能 局部修改,改变每一个控制点对整个曲面都有影响, B 样条曲面可以避免该缺点. B 样条曲面有类似 Bezier 曲面的空间几何性,而且连接更方便.

给出(n+1) ×(m+1)空间点阵 $P_{ij}(i=0,1, ..., n; j=0,1, ..., m)$,则

$$P(s, t) = \frac{\prod_{i=0}^{n} M_{i,k}(s) N_{j,l}(t) P_{ij}}{(0 \ s, t \ 1)},$$
(2)

定义了 $k \times l$ 次 B 样条曲面,式中 $N_{i,k}(s)$ 和 $N_{i,l}(t)$ 是 k 次和 l 次的 B 样条基函数.

三种曲面描述最大的优点是二阶(C_2)连续,对 于通过初始路径扰动修正到真实路径的射线追踪方 法很有益,但在两个方面存在很大的困难^[8,28~30]. 一是曲面的拼接;以 B 样条曲面为例,两个曲面分 别建立在 $n_1 \times m_1$ 和 $n_2 \times m_2$ 网格上.在连接的方 向上,控制点不仅数目相等(如 $n_1 = n_2$),而且要重 合,否则会产生空隙^[31,32].上述条件只能得到 C_0 连 续,如果要求两曲面更光滑连接,则条件更为严 格^[29,31,32],故通常情况下,一个层状界面只用一张 曲面来描述^[10]. 二是射线和曲面的求交很耗时;通 常情况下,射线和三种曲面的求交问题是一个迭代 的过程,Virieux和 Farra^[8]通过分割矩形盒、Rawlinson et al.^[33]通过牛顿法来迭代求取.三角形面片构 造界面则易克服上述困难.

2.3 三角形界面

三角形界面是指地质界面用一组三角形面片拼 接构成.任意给定三维空间的一组离散点,至少存在 一种方法用一组大小不等的三角形来拼接构成三角 曲面网,曲面没有重叠交叉部分,且没有空洞,如 Delaunay方法^[34].

两个三角形之间由一根线段连接,故不会产生 空隙.而射线和三角形面片的求交问题则是解析解, 考虑到射线追踪过程中存在大量射线和曲面的求 交,故能够大大节省射线追踪的时间.另外,增加和 删除部分离散点,重新构造曲面总可以实现,这对建 模中需要修改或删除某些地质点非常有益.图2所 示三维复杂模型的所有界面均采用三角形面片构 成,该模型界面共由 6676 个大小不等的三角形构 成.在著名的建模软件 GOCAD 系统中,也是用三角 形来构造模型的界面^[35,36].

虽然三角面片构造复杂模型有很大的优越性, 但是用于射线追踪却存在很大的缺陷:如果相邻的 两个三角形不在同一平面,则这两个三角面片的法 向量在连接处会发生突变.为了满足射线的 Snell 定 律,透射射线或反射射线在穿过三角形的边界时会 突然改变方向,这导致射线在三角形的边界产生不 连续性.虽然 GOCAD 用离散点光滑处理技术(DSI) 来修改地质界面并可以插值某些缺失或不精确的地 质点,但是不能解决射线的突跳问题^[35,36].因此,基 于 GOCAD 的三维模型在处理射线追踪时会做近似 处理. Guiziou et al.^[37]使用了射线微扰技术,射线必 须通过三角形的顶点.因此,射线追踪过程是一个非 线性最优化问题,结果存在一定的误差,减小误差的 一个途径是增加三角形网格的密度,但这又使得射 线追踪过程更加耗时.

为此,本文对地质界面内各点的法向量进行了 光滑处理.光滑过程分为两个步骤:首先计算界面内 每个地质点的法向量,即每个三角形顶点的法向量; 而三角形内任一点的法向量可利用三个顶点的法向 量线性插值得到.

2.3.1 三角形顶点法向量的计算

地质界面中各点的法向量由该点在该界面内相 邻三角形的法向量加权插值得到,权重和相邻三角 形的面积成正比,和相邻三角形中心到该点的距离 成反比.如图 3 所示地质面内,A 点相邻 1~6 号三 角形,F 点相邻 3、4 号三角形,E 点相邻 4、5 号三角 形等(E 点和 F 点在模型中相邻的三角形不止两 个).设顶点 A 相邻六个三角形的平面法向量记为 $n_i(i=1,...,6)$,面积记为 s_i ,中心到 A 点的距离记 为 d_i ,则顶点 A 的法向量为

$$\mathbf{n}_A = \int_{i=1}^{6} \left(\frac{\underline{s}_i \mathbf{n}_i}{d_i} \right). \tag{3}$$

其他各点,如顶点 B、C的法向量可以由同样的方法获得.

图 3 A 点的法向量由相邻的六个三角形确定 Fig. 3 The normal vector of vertex A is determined by linked six triangles

2.3.2 三角形内任意一点法向量的计算
 对于三角形内部的任意点 P,该点在三角形中
 的面积坐标记为 u_i(面积坐标的定义见附录),则 P
 点的法向量由三个顶点的法向量线性插值得到

$$\mathbf{n}_P = \int_{i=1}^{\infty} \left(u_i \mathbf{n}_i \right). \tag{4}$$

这样求得的法向量在三角形内是一阶连续变化的,在三角形的边界上也是连续的.例如通过三角形 *ABC*和 *ABD* 分别计算得到 *AB* 边上各点的法向量 是相同的.

在同一个地质面内,法向量是一阶连续的,在不同的地质面边界,法向量不一定连续.这也符合实际情况:模型边界的竖直界面和水平界面连接处法向量不应该连续.

3 试射射线追踪方法

我们以三维反射波为例来研究试射法. 在试射 时,首先在垂直平面内按一定角间隔发射一束射线, 在水平方向亦如此,这样形成一个发射角矩阵,这些 试射射线在地表的出射点会形成网格点矩阵,如图 4 所示,这些网格点组成许多三角形,称之为试射射 线出射三角形,出射三角形的三个顶点分别对应试 射的发射角度 (i, ϕ_i) ,对应的发射方向分量为 $(\sin_i \cos \phi_i, \sin_i \sin \phi_i, \cos_i)$, 或记为 w_i , 下同, 其 中(i=1,2,3). 出射三角形在地表上形成了一组三 角形网格,借助于三角形的面积坐标,我们可以快速 地判定目标接收器 P位于哪个三角形内. 已知接收 器位置和该三角形三个角点位置及角点对应的试射 角度,试射追踪过程为如何修正发射角,以便使射线 射向接收器.由于问题的非线性,这是个迭代过程. 如果接受器 P不处在其中任意一个出射三角形中, 且试射的发射方向范围足够大,则接受器 P 处在影 区内.本文的试射方法可以判断接收器是否处在影 区内.

图 4 出射点在地表形成的网格点矩阵形成 一组出射三角形(P点为接收器,下同) Fig. 4 The emergence points form a set of emergence triangles (Cross *P* is a receiver)

由于模型、射线路径的非线性,出射三角形形成 的区域可能会重叠.如果目标接收器同时处于多个

2

出射三角形内,则分别用所在的三角形,称之为迭代 初始三角形,来追踪出几条射线路径.本文的试射方 法能够解决射线路径的多解性.

在试射迭代过程中,本文研究了几种试射角度 的修正方法:细分三角形法、三角形分割法和子三角 形法等.本文没有采取直接对角度修正,而是对方向 分量的修正.

3.1 细分三角形法

$$w_{j} = w_{j}^{(i)} u_{i}.$$
 (5)

以修正得到的射线方向分量 w_j 试射,并求出 试射出射点 T,由于非线性,T 点不一定和 T 点重 合.如果 T 点和接收器的距离小于给定的精度,则 试射迭代结束.否则,出射点 T 把原三角形分割成 三角形 T₁ T₂ T 和 T₁ T T₃,利用面积坐标可判断接 收器 P 所在的三角形,并作为下次试射迭代的初 始三角形.按上述方法继续试射直到试射出射点和 接收器之间距离小于给定的精度为止.在数值试验 中,对于试验模型,平均试射 300 次收敛到接收 器.

3.2 分割三角形法

如图 5b 所示,已知接收器 P 和所在的出射三 角形 T₁ T₂ T₃,用三个顶点对应的试射方向分量,以 P 点在三角形中的面积坐标加权求和得出新的方向 分量,求取方法见(5)式.以该方向分量试射并得到 出射点 T,如果出射点 T 和接收器的距离小于给定 的精度,则试射迭代结束.否则,用出射点 T 把原来 的三角形分割成三个新的三角形 TT₁ T₂、TT₂ T₃ 和 TT₃ T₁.找到接收器 P 处在哪个三角形,并作为 下次试射迭代的初始三角形.按上述方法继续试射 直到出射点和接收器的距离小于给定的精度为止. 数值试验中,对于同一试验模型,平均试射 3~4 次 左右即可收敛. 3.3 子三角形法

如图 5c 所示,已知接收器 *P* 和所在的出射三 角形 *T*₁ *T*₂ *T*₃,用三个顶点对应的试射方向分量, 以 *P* 点在三角形中的面积坐标加权求和得出新的 方向分量.以该方向分量试射并得到出射点 *T*₄, 如果出射点 *T*₄ 和接收器 *P* 的距离小于给定的精 度,则试射迭代结束.否则,构造等边三角形 *T*₄ *T*₅ *T*₆,使得出射点 *T*₄ 为等边三角形的一个顶 点,接收器 *P* 为等边三角形的中心.求出顶点 *T*₅ 和 *T*₆,并以两顶点为目标试射 (即用三个顶点 $T_1 T_2 T_3$ 对应的试射方向分量,分别以 T_5 和 T_6 在三角形中的面积坐标加权求和得出新的方向分 量,并以新的方向分量试射),得到两个出射点 T_5 和 T_6 (由于问题的非线性, T_5 和 T_5 , T_6 和 T_6 不一定重合).试射出射点 T_4 和 T_5 、 T_6 构成 了新的试射迭代初始三角形,继续上面的步骤进行 新的迭代试射,直到新的试射出射点和接收器的距 离小于给定的精度为止.在某些情况下,迭代一次 精度可提高甚至 5 个数量级,经常只需要 4 次试 射,即迭代一次便可满足要求.

图 5 三种试射角度修正方法示意图 (a)细分三角形法;(b)分割三角形法;(c)子三角形法. Fig. 5 The sketch map of three methods of shooting angels modification

3.4 试射方法的比较

本文没有采用传统的角度修正,而是方向分量 的修正.和前者相比,方向分量的修正避免了三角 函数的运算,稳定性好,收敛精度高,在理论分析 和数值试验中都得到充分验证^[1].

在上述三种试射修正中,细分三角形法平均试 射次数最多,收敛性慢,分割三角形法和子三角形 法相当.而试射迭代的收敛精度和收敛时的迭代初 始三角形尺寸大小密切相关,尺寸越小,收敛时可 以达到的精度就越高.随着试射迭代的进行,分割 三角形法迭代初始三角形的尺寸一直保持很大,因 此收敛的精度较低;细分三角形法的迭代初始三角 形在慢慢的变小,精度较前者高;而子三角形法的 迭代初始三角形在迅速变小,收敛精度较前两者高 的多.比较结果可见表 1.

表1	试射方	法的	比较
----	-----	----	----

Table 1	Comparison of three shooting methods			
	细分三角形法	分割三角形法	子三角形法	
平均试射次数	300	3~4	4	
试射迭代收敛性	慢	快	快	
收敛精度	较高	较低	高	

4 模型和试射追踪实例

图 6a 和图 7a 中的模型均是块状结构描述和三 角形面片构造的界面,模型的尺寸范围都是 5000m ×5000m ×5000m.图 6a 显示逆断层模型和其速度 结构,以及该模型上的射线追踪结果,该模型由4个 块、3368个三角形所构造:单炮追踪水平地表 360 个接收器,底部横界面定义为反射面,射线的蓝色部 分为入射射线,红色部分为反射射线.图 6b 为相应 的射线走时图,图中横坐标代表 6 列接收器在地表 的纵坐标(下同).图 7a 为一组合模型及其速度结 构,组合模型包含正断层、逆断层、透镜体和侵入体, 是由 7 个块、4649 个三角形构成:透镜体的上表面 定义为反射面,单炮追踪水平地表 360 个接收器,图 7b显示射线追踪的结果.图 8a 为图 2 所示模型上 的射线追踪结果,模型的尺寸范围是 10000m × 10000m ×5000m,由 18 个块和 6676 个三角形构成; 同一黄色" 地层 "定义为反射面,单炮追踪起伏地表 360个接收器:由于模型结构复杂,速度结构图在此 略去:图 8b 为相应的射线追踪的走时图,由于模型 的复杂性,走时图出现部分间断面.

本文的模型描述和射线追踪已经应用在野外的 地震数据采集和三维设计中.野外工作要求系统执 行射线追踪的时间越少越好.影响射线追踪的时间 因素很多,如模型的复杂性、射线追踪的精度要求、 炮点和接收器的数目以及计算机运行速度等,不同 的参数射线追踪的时间不同.在微机测试上(Pentium 733 MHz),单炮追踪一个接收器的平均时 间为 0.001s,上述炮检数据条件下射线追踪的平均 时间是 0.360s.快速的射线追踪满足了野外的速度 要求.

5 结 论

本文对三维地质模型进行了重新构造,改变了 传统的层状地层的建模方式,引进了块状结构的描述,并采用三角形面片构造块状模型的界面,可以适 应非常复杂的三维介质.新的建模方式从根本上改 变了层状地层建模不能适应复杂地质结构的局面. 为了适应射线追踪的需要,本文对三角形内的法向 量进行了光滑处理,在地质界面内,法向量是连续变 化的.

在块状模型的基础上,运用面积坐标,本文研究 了几种试射追踪方法:细分三角形法、分割三角形法 和子三角形法.试验表明子三角形法最好,收敛快, 精度高.本文的试射方法能够解决射线路径的多解 性、能够判断接收器是否处在影区.

附 录:面积坐标

三角形 *T*₁ *T*₂ *T*₃ 中,给定 *T*₁、*T*₂ 和 *T*₃ 点的坐标,则平 面 *T*₁ *T*₂ *T*₃ 中每一点有一个面积坐标. 对点 *P*,面积坐标为 (*u*₁, *u*₂, *u*₃),定义

[*PT*₂*T*₃]表示三角形 *PT*₂*T*₃的有向面积,当 *P*, *T*₂, *T*₃ 逆时针方向旋转时,定义[*PT*₂*T*₃]为三角形 *PT*₂*T*₃的面积; 当 *P*, *T*₂, *T*₃ 顺时针方向旋转时, [*PT*₂ *T*₃]是负数,绝对值 是三角形 *PT*₂ *T*₃ 的面积.

面积坐标有如下一些基本性质:

(1) *u*₁ + *u*₂ + *u*₃ 1,对于平面上的任意 *P* 点;

(2) u1 0, u2 0, u3 0, |u1| + |u2| + |u3| = 1, 当 P
 点在三角形内或者边界上;

(3) | u₁| + | u₂| + | u₃| > 1, 当 P 点在三角形外部.
 用该性质可以快速地判断 P 点在三角形中的位置.

参考文献

 [1] 徐 涛,徐果明,高尔根等.三维试射射线追踪子三角形法.石 油地球物理勘探,已接收
 Xu Tao, Xu G M, Cao E G, et al. An efficient method to solve

three dimensional ray tracing: subtriangle method. *Oil Geophysical Prospecting* (in Chinese) , in press

[2] 马争鸣,李衍达.二步法射线追踪.地球物理学报,1991,34(4):
 501~508
 Ma Z M,Li Y D. Two-step ray tracing method. *Chinese J. Geo*-

phys. (Acta Geophysica Sinica) (in Chinese), 1991, 34(4): $501 \sim 508$

- [3] 徐 昇,杨长春,刘 洪等.射线追踪的微变网格方法.地球物 理学报,1996,39(1):97~102
 Xu S, Yang C C, Liu H, et al. A grid-changeable method for ray tracing. *Chinese J. Geophys. (Acta Geophysica Sinica)* (in Chinese),1996,39(1):97~102
- [4] 杨长春,冷传波,李幼铭.适于复杂地质模型的三维射线追踪方法.地球物理学报,1997,40(3):414~420
 Yang C C ,Leng C B ,Li Y M. Fast and accurate ray tracing in 3-D media. *Chinese J. Geophys. (Acta Geophysica Sinica)* (in Chinese),1997,40(3):414~420
- [5] Langan R T, Lerche I, Culter R T. Tracing of rays through heterogenous media: An accurate and efficient procedure. *Geophysics*, 1985, 50: 1456 ~ 1465
- [6] Sambridge M, Kennett B. Boundary-value ray tracing in a heterogeneous medium: a simple and versatile algorithm. *Geophys. J. Int.*, 1990, **101**: 157 ~ 168
- [7] Sun Y. Ray tracing in 3-D media by parameterized shooting. *Geo*phys. J. Int., 1993, 114: 145 ~ 155
- [8] Virieux J, Farra V. Ray tracing in 3-D complex isotropic media. Geophysics ,1991 ,56: 2057 ~ 2069
- [9] Julian B R, Gubbins D. Three dimensional seismic ray tracing. J. Geophys., 1977, 43: 95 ~ 113
- [10] Mao W J ,Stuart G W. Rapid multi-wave-type ray tracing in complex 2-D and 3-D isotropic media. *Geophysics*, 1997, 62: 298 ~ 308
- Pereyra V. Two-point ray tracing in general 3-D media. Geophys.
 Prospect., 1992, 40: 267 ~ 287
- [12] Um J, Thurber C. A fast algorithm for two-point seismic ray tracing. Bull. Seism. Soc. Am., 1987, 77: 972 ~ 986
- [13] 高尔根,徐果明.二维速度随机分布逐步迭代射线追踪方法.地球物理学报,1996,39(增): 302~308

Cao E G,Xu G M. A new kind of step by step iterative ray-tracing method. *Chinese J. Geophys. (Acta Geophysica Sinica)* (in Chinese) ,1996, **39**(Suppl.): 302 ~ 308

- [14] 高尔根,徐果明,赵 燚.一种任意界面的逐段迭代射线追踪 方法.石油地球物理勘探,1998,33(1):54~60
 Gao E G, Xu G M, Zhao Y. Segmentally-iterative ray tracing method for any interface. *Oil Geophysical Prospecting* (in Chinese),1998,33(1):54~60
- [15] 高尔根,徐果明,蒋先艺等.三维结构下逐段迭代射线追踪方法.石油地球物理勘探,2002,37(1):11~16
 Gao E G,Xu G M Jiang X Y,et al. Iterative ray-tracing method segment by segment under 3-D construction. *Oil Geophysical Prospecting* (in Chinese),2002,37(1):11~16
- [16] Xu T, Xu G M, Li Y C, et al. Block modeling and segmentally-iterative ray tracing in complex 3-D hetero- geneous media. *Geophysics*, *in press*
- [17] 黄联捷,李幼铭,吴如山.用于图像重建的波前法射线追踪.地 球物理学报,1992,**35**(2):223~233

Huang L J ,Li Y M ,Wu R S. The wave-front ray tracing method for image reconstruction. *Chinese J. Geophys.* (*Acta Geophysica Sinica*) (in Chinese) ,1992 ,**35**(2) : 223 ~ 233

- [18] Vinje V, Iverson E, Goystdal H. Traveltime and amplitude estimation using wavefront construction. *Geophysics*, 1993, 58: 1157~1166
- [19] Vinje V, Iverson E, Astebol K, et al. Estimation of multivalued arrivals in 3D models using wavefront construction. *Geophys. Prospect.*, 1996, 44: 819 ~ 842
- [20] Moser T J. Shortest path calculation of seismic rays. Geophysics , 1991 , $56: 59 \sim 67$
- [21] Velis D R, Ulrych T J. Simulated annealing two-point ray tracing. Geophys. Res. Lett., 1996, 23: 201 ~ 204
- [22] Velis D R, Ulrych T J. Simulated annealing ray tracing in complex three-dimensional media. Geophy. J. Int., 2001, 145: $447 \sim 459$
- [23] Cerveny V. Seismic Ray Theory. Cambridge University Press, 2001
- [24] 张 钋,刘 洪,李幼铭.射线追踪方法的发展现状.地球物理 学进展,2000,15:36~45
 Zhang P,Liu H,Li Y M. The situation and progress of ray tracing method research. *Progress in Geophysics* (in Chinese),2000, 15:36~45
- [25] 杨文采,李幼铭.应用地震层析成像.北京:地质出版社,1993

Yang W C ,Li Y M. Applied Seismic Tomography (in Chinese). Beijing: Geological Publishing House ,1993

- [26] Goystdal H, Reinhardsen J E, Astebol K. Computer representation of complex 3-D geological structures using a new "solid modeling "technique. *Geophys. Prosp.*, 1985, 33: 1195 ~ 1211
- [27] 徐果明,卫山,高尔根等.二维复杂介质的块状建模及射线 追踪.石油地球物理勘探,2001,36(2):213~219
 Xu GM, Wei S, Gao E G, et al. Block model-building and raytracing in 2-D complicated medium. *Oil Geophysical Prospecting* (in Chinese),2001,36(2):213~219
- [28] 李迎春,徐果明,徐 涛.地下介质三维模型中界面的描述方法.地球物理学进展,2002,17(3):445~450
 Li Y C, Xu G M, Xu T. The methods of describing the underground model. *Progress in Geophysics* (in Chinese),2002,17(3):445~450
- [29] 徐 涛. 三维复杂介质的块状建模和快速射线追踪[博士论文]. 安徽:中国科学技术大学,2003
 Xu T.Block modeling and fast ray tracing in complex three-dimensional media [Ph.D. Thesis](in Chinese). Anhui: University of Science & Technology of China,2003
- [30] Barth W, Sturzlinger W. Efficient ray tracing for Bezier and Bspline surfaces. Computers & Graphics, 1993, 17 (4): 423 ~ 430
- [31] 常庚哲.曲面的数学.湖南:湖南教育出版社,1995
 Chang G Z. The Mathematics of Surfaces (in Chinese). Hunan: Hunan Education Press,1995
- [32] 王得人,杨忠华.数值逼近引论.北京:高等教育出版社,1990
 Wang D R, Yang H Z. Introduction to Numerical Approximation Theory (in Chinese).Beijing: Higher Education Press,1990
- [33] Rawlinson N, Houseman G A, Collins C D N. Inversion of seismic refraction and wide-angle reflection travel times for three-dimensional layered crustal structure. *Geophy. J. Int.*, 2001, 145: 381 ~ 400
- [34] Delaunay B N. Sur La Sphere Vide. Bull. Acad Science USSR: Class Sci. Math, VII, 1934, 793 ~ 800
- [35] Mallet J L. Discrete smooth interpolation. A CM transactions on Graphics, 1989, 8: 121 ~ 144
- [36] Mallet J L. Discrete smooth interpolation in geometric modeling. Computer-aided-design, 1992, 24: 178 ~ 193
- [37] GuiZou J L ,Mallet J L ,Madariaga R. 3-D seismic reflection tomography on top of the GOCAD depth modeler. *Geophysics*, 1996, 61(5): 1499 ~ 1510