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ABSTRACT

We propose using a set of blocks to approximate geologi-
cally complex media that cannot be well described by lay-
ered models. Interfaces between blocks are triangulated to
prevent overlaps or gaps often produced by other tech-
niques, such as B-splines, and to speed up the calculation of
intersection points between a ray and block interfaces. We
also use a smoothing algorithm to make the normal vector
of each triangle continuous at the boundary, so that ray trac-
ing can be performed with stability and accuracy. Based on
Fermat’s principle, we perturb an initial raypath between
two points, generally obtained by shooting, with a segmen-
tally iterative ray-tracing �SIRT� method. Intersection
points on a ray are updated in sequence, instead of simulta-
neously, because the number of new intersection points may
be increased or decreased during the iteration process. To
improve convergence speed, we update the intersection
points by a first-order explicit formula instead of traditional
iterative methods. Only transmitted and reflected waves are
considered. Numerical tests demonstrate that the combina-
tion of block modeling and segmentally iterative ray tracing
is effective in implementing kinematic two-point ray trac-
ing in complex 3D media.

INTRODUCTION

Two-point ray tracing is crucial to seismic tomography, earth-
uake location, seismic acquisition, and survey design. Previously
eported methods include shooting �Langan et al., 1985; Virieux
nd Farra, 1991; Sun, 1993; Sambridge et al., 1995� and bending
Julian and Gubbins, 1977; Aki and Richards, 1980; Thurber and
llsworth, 1980; Um and Thurber, 1987; Prothero et al., 1988;
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ereyra, 1992; Mao and Stuart, 1997; Gao et al., 1998�. Other
ethods include wavefront techniques �Vinje et al., 1993, 1996�,

raph theory �Moser, 1991; Fischer and Lees, 1993; Zhang et al.,
000; Zhao et al., 2004� and simulated annealing �Velis and Ul-
ych, 1996, 2001�.

Most but not all of the above methods are based on models pa-
ameterized in cells �or grids� �Langan et al., 1985; Moser, 1991�
r layers �Zelt and Smith, 1992; GuiZiou et al., 1996; Mao and Stu-
rt, 1997; Rawlinson et al., 2001�. When divided into fine enough
ells or grids, the model can be a good approximation to reality.
owever, usually the number of cells or grid points is reasonably

arge — for example, 11 875 �125 � 95� cells �Langan et al.,
985� and 2500 �50 � 50� grids �Moser, 1991� in two dimensions.
he computation time of the algorithms is almost linearly propor-

ional to the number of nodes in the models when traveltimes are
alculated for all nodes �Moser, 1991�; therefore, ray tracing can be
ery time consuming for these models, especially in three dimen-
ions. In some situations, a horizontally layered model is fairly ef-
ective in describing geologic structures and is especially conve-
ient for ray tracing. However, in such models, layer boundaries
annot cross each other. For example, in a layered model, a ray
ust pass through overburden layers in sequence until it meets the

iven reflecting interface; it then returns through the same layers in
everse order. Such a requirement cannot be met in situations such
s the one in which a ray crosses the fault on the right side of point

in Figure 1. To overcome this difficulty, pseudointerfaces
dashed lines in Figure 1� are introduced, a process that sometimes
uffers from overlapping boundaries. In the case of more complex
eologic structures �Figure 2�, layered parameterization is very dif-
cult.
Instead, Gjøystdal et al. �1985� use a solid modeling technique

o generate a 3D model. The term solid modeling refers to the fact
hat the internal geometrical properties of the model can be mod-
led as a combination of solids or volumes in 3D space. However,
his algorithm defines complex regions using counterintuitive, set
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T42 Xu et al.
heoretical operations on the volumes limited by simpler sur-
aces — an algorithm improved and made more intuitive and natu-
al by Pereyra �1992�. Requiring patch linking without gaps, as de-
cribed below, results in block models that describe relatively
imple cases as well as some complex cases, such as pinch-out lay-
rs and salt domes with overhangs �mushroom model�.

In many applications, realistic 3D models must be constructed to
epresent very complex structures. In this paper, we further de-
elop the solid modeling method for space parameterization. Our
pproach is based on that of Pereyra �1992�, and our major im-
rovement is in the description of interfaces. Based on block mod-
ls, we also develop a segmentally iterative method for ray tracing,
hich is a variant of the bending technique. The method is effec-

ive for ray tracing complex model structures.

MODEL PARAMETERIZATION

After long tectonic evolution, most geologic units become very
omplex, and in only fairly idealized cases can they be represented
y relatively simple structures �Figure 2�. In this model, most local
olumes can be regarded as homogeneous, with changes occurring
iscontinuously at volume boundaries. Such media would be better
pproximated as so-called blocks as opposed to layers. In this pa-
er, a block model is described as an aggregate of arbitrarily
haped blocks or volumes separated by interfaces.

Xu et al. �2001� have studied block parameterization in two di-
ensions. The structure of these media is represented hierarchi-

igure 1. Pseudointerfaces �dashed lines� should be added for the
ayer-based reverse fault model. Note that the layer orders are de-
cribed; some interfaces overlap.

igure 2. The complex model is an aggregate of blocks with trian-
ulated interfaces. Different blocks are shown in different shades
f gray. Layer parameterization is hardly possible in this complex
odel.
ally as area→element→edge→segment→point. In three dimen-
ions, we describe block structure as volume→block→interface

triangle→point. Three-dimensional geologic media are de-
cribed as an aggregate of geologic blocks, each with its own geo-
ogic attributes, such as density and seismic-wave velocity. Geo-
ogic blocks are separated by interfaces, which are described by
everal discrete points and are triangulated in our scheme. The geo-
ogic media parameterized in the structure mentioned above are
epresented uniquely, as described in the following section.

nterface representation

In block representation, the key implementation is interface
→triangle�→point, which can be done with Coons, Bezier, B-
pline, and triangulated surface patches. Before going into detail,
e list a few requirements for a good ray-tracing algorithm:

� The complex 3D media can be efficiently parameterized.
� Surface patches should be linked smoothly and gaps should

not be generated in patch links.
� Ray tracing should not be very time consuming, so the inter-

section point between a ray and a surface patch should be ob-
tained rapidly.

Coons, Bezier, and B-spline surface patches are usually interpo-
ated according to rectangularly spaced nodes, though they can be
efined on nonrectangular domains in parametric form, such as a
orrespondence between the physical domain in the �x,y� plane
nd the unit square in parameter space �u,v� �Pereyra, 1996�.
oons patches pass through all nodes, while Bezier and B-spline
atches do not. B-spline patches have better geometric properties
han Coons patches, and the polynomial order does not increase
ecessarily with the number of nodes, as it does with Bezier
atches. Therefore, B-spline patches are widely applied to repre-
ent geophysical interfaces �for analytical expressions of such sur-
ace patches, see Pereyra, 1992, 1996�. The main advantage of
hese representations is that the surfaces are everywhere continu-
us in curvature, since C2 continuities are beneficial to ray-tracing
ethods that rely on nearby ray trajectories to vary smoothly to
nd an optimal solution.
However, there are two problems in the representation of these

atches. One of them is the issue of interface linking. Consider the
-spline interface in which two interfaces are constructed based on

ectangular nodes n1 � m1 and n2 � m2. In the linked direction,
he number of control vertices should be equal �e.g., n1 = n2� and
he line of control vertices identical. Such a situation results in only

0 continuous linking, and smoother interfaces �e.g., C2 continu-
us� require stricter constraints. Otherwise, gaps are generated
Wang and Yang, 1990� and ray tracing is difficult to implement.
inje et al. �1999� present the open model to describe an interface
ontaining holes or cracks. They also present a ray-tracing method
ith associated wavefront construction to address open models.
owever, the method is nonunique in determining geologic prop-

rties beside a hole or crack.
The other issue is that obtaining the intersection point between a

ay and an interface interpolated with splines is very time consum-
ng. Generally, intersection points are obtained by an iterative pro-
edure, which is more time consuming than using analytical ex-
ressions. Some authors use strategies based upon a box hierarchy
Virieux and Farra, 1991� or a generalized Newton method �Raw-
inson et al., 2001�.
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Block modeling and SIRT in 3D media T43
riangulated interfaces

We avoid these problems above by using triangulation to repre-
ent geologic interfaces. For any given set of discrete nodes in a
eologic interface, there is at least one scheme to construct an in-
erface with a set of triangles of different sizes without any gaps,
uch as Delaunay triangulation �Delaunay, 1934�. As an example,
igure 2 displays a complex block model, where different blocks
re represented as different shades of gray. Interfaces in this model
re constructed with 6676 triangles. Since the intersection between
line and triangle can be computed analytically, the large number
f ray/interface intersections can be computed quickly. In addition,
ncreasing or decreasing the number of nodes and reconstructing
he interface with the remaining nodes is easy to implement, a pro-
ess that is very useful for modifying or eliminating inaccurate
eophysical nodes. Triangulated interfaces are also applied in the
ell-known GOCAD system �Mallet, 1989, 1992�.
However, triangulated interfaces are less smooth. Since each tri-

ngle has a normal vector that is determined by the three vertices
f the triangle, normal vectors vary abruptly across linked bound-
ries of two triangles that are not in the same plane. Ray tracing in
uch a situation is quite difficult, where a reflected or transmitted
ay may change direction abruptly across linked boundaries.

To solve the problem, we propose a new algorithm to redefine
ormal vectors at arbitrary points on the interfaces. The scheme is
mplemented in two steps. First, the normal vector at each vertex is
pecified; then, the normal vector at an arbitrary point in a triangle
s obtained by interpolation among the three normal vectors at the
riangle’s vertices. For similar techniques of smoothing normal ve-
tors, see Zelt and Smith �1992� and Vinje et al. �1999�.

The normal vector at each vertex is estimated by linked triangles
n the interfaces. Figure 3 illustrates a simple interface. For ex-
mple, vertex A is linked to six triangles marked with number sym-
ols, and the normal vector in vertex A can be estimated by the for-
ula

nA = �
i=1

N � sini

di
� , �1�

here N is the number of linked triangles, which is equal to six for
ertex A, ni denotes the normal vector of each plane triangle, si de-

igure 3. The normal vector in vertex A is determined by six linked
riangles. The normal vectors are smoothed inside the triangles and
cross the boundary of two adjacent triangles.
otes the area of each triangle, and di denotes the distance between
ertex A and the central point of each triangle.
Normal vectors at all vertices can be calculated in the same way.

ote that the summation is composed of six items in the computa-
ion of vertex A, while it is composed of two items for vertex E and
, because only two triangles are linked to them on this interface.
The second step is linear interpolation to obtain the normal vec-

or at an arbitrary point on the surface. For example, the normal
ector at an arbitrary point in triangle ABC of Figure 3 can be de-
cribed as n = �i=1

3 �uini�, where u represents the area coordinate of
he point in triangle ABC. �For a description of area coordinates,
ee Appendix A and Chang, 1995�, and ni represents normal vec-
ors at vertices A, B, C.� The normal vector in the triangle changes
inearly with the change of the area coordinate u, which corre-
ponds to the point’s position. As a result, the normal vector chan-
es smoothly in the triangle, as well as on the three edges of the tri-
ngle; e.g., the normal vector at a point on edge AB is the same,
hether it is calculated from the triangle ABC or the triangle ABD.
herefore, normal vectors are continuously varying on the whole
urface.

Vinje et al. �1999� use a similar representation of triangular in-
erfaces without explaining how to obtain the normal vectors at the
ertices. Linear interpolations are used to estimate the spatial posi-
ion and normal vector within a triangle, which is essentially the
ame as interpolation by area coordinate, but the latter has good
eometric attributes, as described in Appendix A.

Inevitably, the representation of a triangular interface has errors
ince it is not a true C2 patch surface. It is only approximately C2,
nd the computed oblique normal is not perpendicular to the plane
riangles. Sometimes, for a sparsely sampled and rapidly fluctuat-
ng interface, an analytically interpolated normal at a vertex may
ave direction opposite to others, which may lead to an incident
ay emerging on the wrong side of the interface �i.e., a transmitted
ay passes back into the previous block or a reflected ray passes
hrough into the next block�. Generally, errors are rare if the inter-
ace is oversampled, but they are difficult to avoid completely.

RAY-TRACING METHOD

In ray tracing with the shooting method, updating take-off an-
les and computing new raypaths are very time-consuming tasks,
specially in complex media. To enhance efficiency, we have de-
eloped a segmentally iterative ray-tracing �SIRT� method, based
n Fermat’s principle of stationary time, to suit block models
SIRT is a well-established name in geophysical inversion, but we
till use this acronym�. The SIRT algorithm is shown schematically
n Figure 4. Consider the transmitted wave, for which ray tracing
equires an initial raypath RP1P2, . . . ,Pn−1PnS. For the whole ray-
ath to satisfy Fermat’s principle, any successive three intersection
oints of the raypath must also satisfy the stationary traveltime
rinciple. This observation leads to an approximate modifying for-
ula. The formula is the same whether the midpoint is a reflection

r a transmission point. From the source or receiver, three succes-
ive points R,P1,P2 are selected to obtain the new midpoint P1� by
he modifying formula. Replace P1 with P1�, and the next three suc-
essive points P1�,P2,P3 are selected. Adjust the intersection points
n the same way, and the adjusting process progresses until meet-
ng the end point S. One iteration produces a new raypath RP1�P2�,
. . . ,Pn�S, and another iteration progresses in the same way. Ray
racing terminates when the modifying values of reflection �or tran-
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T44 Xu et al.
mission� points meet the accuracy requirement �typically a preci-
ion of 1 m is required in a 5000 � 5000 � 5000 m model�.

SIRT is based on an initial-guess raypath, generally obtained by
hooting. Our shooting scheme is similar to the first step of the
our-step shooting method �Rawlinson et al., 2001�. The scheme
nvolves shooting an approximate spread of rays in constant incre-

ents of � �typically �1°� and � �typically �5°�, the ray inclina-
ion and azimuth, respectively, at the source. The emergence points
an form several triangles �Figure 5�. Target receiver P falls inside
riangle ABC, whose vertices are the emergence points of three ad-
acent rays. If the distance between receiver P and the nearest point

is less than the required accuracy �typically 1–5 m�, the shooting
aypath can be regarded as true. Otherwise, we substitute the posi-
ion of the receiver for that of point B and implement SIRT. If the

odel is not too complex, an initial-guess reflection point can be
btained by some simple method, and the reflection point can be
onnected to the source and the receiver by straight lines. That
eans the initial raypath comprises straight lines to save shooting

ime.
SIRT cannot solve multiple paths. One initial-guess ray con-

erges to only one ray. Furthermore, two emergence triangles con-
tructed by adjacent rays may overlap, and a receiver can fall into
wo or more emergence triangles. Different initial trajectories from

receiver may converge to different minima or one minimum,
hich may be global or local. As a result, several paths from a re-

eiver may result from our tracing scheme.

odifying formula

As discussed above, application of Fermat’s principle to three
uccessive points along a raypath results in a formula for modify-
ng the midpoint during SIRT. Figure 6 is a sketch of the modifica-
ion of a midpoint.

The position in a triangle on an interface is described with two
arameters s and t,

xi = xi�s,t�, �i = 1,2,3� . �2�

he parameters �s, t� correspond to �0, 0�, �1, 0�, and �0, 1� at the
hree vertices. Values of x and y �maybe y and z, z, and x� corre-
ponding to parameters s and t lie in the triangle.

In Figure 6, the wave velocity of the upper block is v1 and in the
ower is v2. Two successive segment lengths are described as l1 and
2, and traveltime is described as

igure 4. The sketch illustrating segmentally iterative ray tracing.
he node points along the raypath are modified segmentally.
T =
l1

v1
+

l2

v2
,

here

l1 = ��
i=1

3

�xi − xi
�1��2�1/2

, l2 = ��
i=1

3

�xi − xi
�3��2�1/2

.

�3�

n the expression xi
�j�, j denotes three successive points, and i de-

otes three coordinates of one point. The conditions for stationary
raveltime are

	 �T

�s
	

�s=s*,t=t*�
= 0, 	 �T

�t
	

�s=s*,t=t*�
= 0. �4�

sing only the first term of a Taylor series, we obtain the final
odifying formula, which is the same whether the midpoint is a re-
ection or transmission point:

�s =
U22d1 − U12d2

�
, �t =

U11d2 − U21d1

�
. �5�

For details, see Appendix B.�
Substitute the position �s + �s,t + �t� for the primary position

s,t� directly if the new midpoint falls on the original interface.
therwise, additional judgment is needed to determine whether in-

ersection points should be added or removed.

igure 5. �a� Ray direction parameters at source � �inclination� and
�azimuth�. �b� Receiver P �cross� falls into the triangle form-

d by adjacent emergence points A, B, and C.

igure 6. The sketch for modifying the middle point of two seg-
ents of a trajectory.
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Block modeling and SIRT in 3D media T45
dding or removing intersection points during iteration

In block models, some new problems arise from SIRT. The num-
er of intersection points in a trajectory can be increased or de-
reased during the course of an iteration, a phenomenon that does
ot occur in layered models. Figure 7 indicates the trajectory
hange from P0P1P2 to P0P0�P1�P2 after an iteration.

There are two blocks on each side of every interface, and one
lock beside a boundary interface can be regarded as null. Obvi-
usly, there is a common block beside two interfaces, which two
uccessive intersection points determine. For example, block 0 is
he common block beside interface 0 and interface 1. In the three
uccessive intersection points P0P1P2, midpoint P1 situated on in-
erface 1 is updated by the modifying formula and a new midpoint

1� is obtained, which is situated on a new interface 2. If the blocks
eside interface 1 and interface 2 were identical, we would not
eed to add or remove intersection points. However, such a situa-
ion does not exist in this case. Furthermore, since no common
lock is beside interface 0 and interface 2, intersection points must
e added between point P0 and P1�. A ray connecting P0 to P1� inter-
ects interface 4 at point P0�. However, there is a common block
block 2� beside interface 2 and interface 3; hence, no intersection
oint should be added or removed. As a result, the segmental tra-
ectory P0P0�P1�P2 is the updated raypath of P0P1P2. Of course, fur-
her operations are required for more complex cases, such as when
lens �block 3� exists inside block 2. Then, the program needs to
ecide whether the straight line connecting point P1� with point P2

ntersects other interfaces in block 2. If an intersection point exists,
dditional intersection points must be added.

The converse variation of changing the segmental trajectory
rom P0P0�P1�P2 to P0P1P2 is similar but is not discussed here.

daptability of SIRT in block models

In general, bending methods involve perturbing an initial ray
rajectory in some way, such that, by iterations, some criterion con-
erges to a minimum. There are usually two cases. One is the issue
f perturbing trajectories in a continuous medium. For example,
ulian and Gubbins �1977� adopt finite-difference approximations
o second-order differential equations; Pereyra et al. �1980� adopt
onlinear first-order differential equations and solved jump discon-
inuities across interfaces; and Um and Thurber �1987� develop an
lgorithm by using a geometric interpretation of the ray equations.
he other issue involves perturbing trajectories across discontinu-
us boundaries. Mao and Stuart �1997� update all path points si-
ultaneously by a quasi-linearization equation. Such an updating

quation is not efficient in block models because the number of in-
ersection points may vary during an iteration, as described above.

igure 7. A segmental trajectory changes from P0P1P2 to P0P0�P1�P2

fter one iteration.
o overcome this problem, we update intersection points segmen-
ally and add or remove intersection points as necessary. SIRT has
imilar applicability to the perturbation scheme of Zhao et al.
1992�. Based on Snell’s law, intersection points are updated di-
ectly by a first-order explicit formula instead of using an iterative
ethod �called the bisection method� in the case of discontinuous

oundaries. Since ray-tracing schemes involve modifying many in-
ersection points, our tracing scheme saves considerable time.

Blocks in this paper comprise homogeneous media with the
ame geologic attributes �density, seismic wave velocity, etc.�, and
ays are straight. Heterogeneous media can be approximated by
everal small blocks, each of which is homogeneous — a process
hat is inefficient if the media have constant gradients. In that case,
he ray trajectory in that medium is a segment of arc and can be de-
cribed analytically �Rawlinson et al., 2001�. SIRT could also be
pplied in the same way; the main difference is the modification of
idpoints, which is much more complex and is not discussed here.

SYNTHETIC DATA EXAMPLES

We present three typical block models �Figures 2 and 8� to illus-
rate the SIRT method. These models, which are contained within
ubes, are all composed of several blocks separated by triangulated
nterfaces. Figure 8 shows a reverse fault model and a combination

odel with associated velocity structures. Both models have di-
ensions of 5000 � 5000 � 5000 m. Model 1 has 4 blocks and

368 triangles. Model 2, composed of normal faults, reverse faults,

igure 8. Two block models with associated velocity structures. �a�
he reverse fault model 1 has 4 blocks and 3368 triangles. �b� The
ombination model 2, composed of normal faults, reverse faults,
n intrusive mass, and a lens, has 7 blocks and 4649 triangles.
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T46 Xu et al.
n intrusive mass, and a lens, has 4 blocks and 4649 triangles. Fig-
re 2 shows a complex model �model 3� with a size of 10 000

10 000 � 5000 m; it has 18 blocks and 6676 triangles. To avoid
ndue complexity, the velocity structure is omitted here.

ay-tracing results

We used three block models mentioned above for ray-tracing
ests. Some of the source-receiver pairs designed for these models
re shown in Figure 9. The source-receiver pairs are located on the
arth’s surface, and the locations of the sources and receivers are
ndicated by stars and triangles, respectively. The solid source-re-
eiver pairs in Figure 9a are used for model 1, and the hollow pairs
re used for model 2; the pairs used for model 3 are in Figure 9b.
ote that the surface size is 10 000 � 5000 m in model 3. For

ach case, 360 receivers are arranged in a 6 � 60 rectangle. In our
ests, two lower-layer interfaces in model 1 and the upper interface
f the lens in model 2 are defined as reflecting interfaces.

Shooting rays are selected as initial raypaths for SIRT in our
cheme. The approximate ranges of � �inclination� and � �azimuth�
hould be chosen differently for different models and associated
ource-receiver pairs. The ranges of � and � are typically 10°

35° and 60°�50°, respectively, with increments of 1° and 5°, re-
pectively, in model 1 and 3°�10° and 100°�240°, respectively,
ith the same increments in model 2.
In ray-tracing model 1 �Figure 10a�, the blue part of each ray is

he incident ray, and the red ray is the reflected ray. Figure 10b
hows the associated traveltimes plotted against distance, which is

igure 9. The locations of sources and receivers, indicated by stars
nd triangles, respectively. �a� The solid source-receiver pairs are
esigned for model 1 and the hollow pairs are designed for model
. �b� The solid pairs are designed for model 3. Only a subset of the
eceivers is shown.
he receiver y-coordinate. To illustrate the necessity of smoothing
nterfaces, we ray trace the same model with smoothed interfaces
Figure 11a� and unsmoothed interfaces �Figure 11c�. In compar-
ng the associated traveltimes, we note continuous results for
moothed interfaces �Figure 11b� and sporadic results for un-
moothed interfaces �Figure 11d�. Without smoothing, the use of a
riangular mosaic to describe an interface introduces ray shadow
ones because of gradient discontinuities at sutures between adja-
ent triangles.

Figure 12 shows the raypaths and associated traveltimes for
odel 3. The second geologic layer �yellow� is defined as the refle-

ting interface. Note that the surface of model 3 is fluctuant, while
hose of model 1 and model 2 are planar.

Our modeling approach can be applied to seismic acquisition or
urvey design. This application requires software that performs ray
racing rapidly and can be applied to complex media. Various fac-
ors influence ray-tracing computation time in three dimensions —
actors such as media complexity, tracing precision, the number of
ource-receiver pairs, and computer speed. In the ray-tracing ex-
mples above, the precision requirement is 1 m, which is the maxi-
um modifying value equal to 
��x�2 + ��y�2, corresponding to
��s�2 + ��t�2 in an entire trajectory.

igure 10. �a� The ray-tracing result using one source and 360 re-
eivers in model 1. The blue part of a ray is incident, and the red is
eflected. The lower layer interface is the reflecting interface. Neg-
tive values indicate depth beneath the surface. �b� Associated tra-
eltimes.
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Next, we present a set of tests that compares the adaptability and
alculating speed of SIRT with those of the shooting method.

omparison with shooting method

It is very difficult to make a fair comparison between various
ethods in adaptability and calculating speed because different

aypaths result from different model representations. We compare
IRT to the shooting method based on model 2 �Figure 8� and
ource-receiver pairs in Figure 13. The bottom receiver is labeled
umber one.

After the shooting procedure, the fifteen receivers are located at
fteen so-called primary triangles. The vertices of a primary trian-
le are three adjacent emergence points. The fifth, sixth, and sev-
nth receivers are located in three primary triangles �Figure 13�.
ake-off angles are updated iteratively, a process that terminates
hen a ray ends within a given distance from its target. If the take-
ff angles for three vertices are described as ��i,�i�, i = 1,2,3, and
he area coordinate of a receiver in the triangle is described as ui,
hen the strategy for updating take-off angles is given by

� = �
i=1

3

�iui, � = �
i=1

3

�iui. �6�

Table 1 shows the change in distance d with the number of itera-
ions, where d is the distance between the emergence point and a
eceiver after an iteration.

SIRT selects the ray whose emergence point is nearest to a re-
eiver and then replaces the endpoint position of the ray with that
f the receiver. The modified ray is regarded as the initial-guess
ay. In the subsequent segmental iteration, ��si,�ti�, i =
,2, . . . ,n are modifying values of midpoints, where n + 2 is the
umber of whole raypath points; ��xi,�yi� are corresponding
odifying values. A modifying distance d of a midpoint is de-

cribed as d = ��xi
2 + �yi

2�1/2, and the largest modifying distance
max is the maximum modifying distance during an iteration. Table
shows the change in dmax with the number of iterations compared

o distance d for shooting.

igure 13. The locations of a source and 15 receivers are indicated
y solid stars and upright triangles, respectively. The inverted tri-
ngles are primary emergence points
igure 11. �a� Ray-tracing results with one source and 360 receiv-
rs in model 2. The upper interface of the lens is defined as the re-
ecting interface. �b� The associated traveltimes of �a�. �c� The ray-

racing result with no interfaces smoothed. �d� The associated trav-
igure 12. �a� The ray-tracing result with one source and 360 re-
eivers in model 3. The semitransparent surface is fluctuant. The
econd layer �in yellow� is defined as the reflecting interface. �b�
ssociated traveltimes.
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Figure 14 displays the relative travel-
time errors at three receivers when calcu-
lated by shooting and SIRT, respectively.
The relative errors are calculated using
the formula 100 � �t − tmin�/tmin, where
minima tmin are obtained by running SIRT
with 100 iterations and the largest modi-
fying distance precision is equal to 0.01
m.

Table 1 displays ray-tracing perform-
ance for three receiver locations with in-
creasing iterations. Note that SIRT con-
verges more efficiently than does the
shooting method. Shooting does not con-
verge for receiver 5 and converges to a
nonminimum value for receiver 6. The
associated traveltime errors �Figure 14�
show the same point. However, SIRT has
good convergence for these receivers. For
receiver 7, both methods converge, but
SIRT is more accurate when more itera-
tion times are chosen.

The updating scheme for the shooting method is linear modifica-
ion of � and �, a scheme that sometimes does not converge robust-
y for a general complex medium. However, SIRT modifies the in-
ersection points of an initial raypath segmentally. The local modi-
cation is relatively linear as opposed to shooting. A raypath con-
erges faster when closer to the real one in SIRT.

The traveltimes at 15 receivers �Figure 15� show poor solutions
rom shooting in complex media. The upright triangles denote trav-
ltimes obtained by SIRT and the reverse ones by shooting. Seven
eceivers have no ray-tracing results from shooting �Figure 15�,
hile all receivers have ray-tracing results from SIRT. The travel-

imes from the two methods are close for those receivers that have
olutions.

The CPU time �PC, Pentium III 733 MHz� for the shooting
ethod is 3.69 s and for SIRT is 1.81 s, showing that SIRT is fast-

r than shooting in this case.

shooting
iterations.

Receiver 7

m�
ting

dmax�m�
SIRT

12 14.9793

205 10.1628

033 8.34367

301 7.12858

187 6.18498

859 5.39240

3171 4.70551

7327 4.10417

9594 3.57667

1469 3.11426

igure 15. The traveltimes at 15 receivers obtained by shooting
nd SIRT, respectively. Upright triangles denote those by SIRT; in-
erted ones denote those by shooting. Seven receivers have no ray
race results from shooting.
able 1. The distance d between emergence points and a receiver in
ompared to the maximum modifying distance dmax in SIRT after N

Iteration
times

Receiver 5 Receiver 6

d�m�
Shooting

dmax�m�
SIRT

d�m�
Shooting

dmax�m�
SIRT

d�
Shoo

1 93.9884 15.4335 252.918 106.216 125.6

2 147.240 6.66932 212.620 17.3914 52.1

3 380.846 5.42493 200.481 12.9176 37.4

4 408.909 4.61834 522.152 12.0007 24.0

5 155.147 3.98158 509.200 11.0424 16.8

6 158.722 3.44501 506.336 10.0900 12.2

7 160.985 2.98441 505.692 9.17271 9.2

8 411.045 2.59024 505.547 8.64549 7.0

9 161.530 2.24708 505.514 8.43965 5.4

10 161.865 1.94813 505.507 8.19567 4.3
igure 14. Traveltime relative errors at three receivers obtained by
hooting and SIRT, respectively, as a function of the number of it-
rations: �a� receiver 5, �b� receiver 6, �c� receiver 7.
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omparison with GOCAD ray-tracing scheme

Our model parameterization has similar generality to that of
OCAD in representing triangular interfaces. The main improve-
ent is that our scheme involves smoothing normal vectors

hroughout interfaces.
Though GOCAD uses the discrete smooth interpolator �DSI� to
odify exiting interfaces and interpolate some geologic nodes that

re missing or inaccurate, it cannot deal with abrupt changes of
ormal vectors �Mallet, 1989, 1992�. Therefore, ray tracing on top
f the GOCAD modeler should be treated as an approximation.
uiZiou et al. �1996� use a ray perturbation technique and indicate

hat a raypath is bound to pass through the geologic nodes when
he model is based on macrolayers. An initial trajectory is obtained
y the shooting method; then a search of trajectories that can be
onstructed within the immediate neighborhood of the current tra-
ectory is conducted for one with less associated traveltime. This
ay-tracing procedure involves solving a nonlinear optimization
roblem and results in considerable errors. The accuracy can be
mproved by increasing the density of nodes on the surfaces, but
he algorithmic computation is proportional to �s + 1�2, where s is
he number of the neighborhood and hence is much more time con-
uming. Furthermore, searching the immediate neighborhood of
he current trajectory makes it converge easily to a local minimum,
nd the transmission and reflection points can be focused on one
oint or a local region, a situation that is fatal for seismic acquisi-
ion and survey design.

In our scheme, normal vectors are approximately C2 continuous
ver an entire interface. Therefore, an initial ray can hit a model in-
erface at an arbitrary point in SIRT. Furthermore, the modified

idpoint can be located at an arbitrary point on the crossing inter-
ace. As a result, a trajectory traced in SIRT is more accurate than
hat in GuiZiou et al. �1996�.

CONCLUSIONS

Complex media are described as aggregates of arbitrarily shaped
locks rather than layers and cells �grids�. Using triangulated inter-
aces, complex media, such as faults, pinch-outs, intrusive tecton-
cs, and lenses can be faithfully represented by blocks. We propose
n algorithm for smoothing normal vectors over interfaces to en-
ble more stable and accurate ray tracing.

Since the shooting method can be inefficient and, hence, time
onsuming, we develop a SIRT method based on Fermat’s prin-
iple, which falls into the bending method category. Intersection
oints on an initial trajectory are modified segmentally instead of
imultaneously. In a departure from traditional iterative methods,
e update the midpoints by a first-order explicit modifying for-
ula to speed up ray tracing greatly. In comparison tests with the

hooting method, SIRT is faster and has better convergence in
omplex media.

Heterogeneous media can be approximated by a set of blocks, an
pproximation that is inefficient if a block has a constant gradient.
IRT could also be applied in a medium with constant gradients;

he main difference is the modification of midpoints. Synthetic data
xamples show that the block modeling and SIRT method is suited
o most complex media in three dimensions.
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APPENDIX A

AREA COORDINATES

In the triangle T1T2T3 �Figure A-1�, if the coordinates of the
hree vertices T1, T2, and T3 are given, then any point in the plane
onstructed with the three vertices has an area coordinate ui �i
1,2,3�. The area coordinate of point P in the triangle is described

s

u1 =
�PT2T3�
�T1T2T3�

, u2 =
�T1PT3�
�T1T2T3�

, u3 =
�T1T2P�
�T1T2T3�

,

�A-1�

PT2T3� denotes the directional area of triangle PT2T3, which is the
rea of triangle PT2T3 when PT2T3 is counterclockwise; otherwise,
PT2T3� is a negative value whose absolute value is equal to the
rea of the triangle.

Area coordinates have the following attributes:

u1 + u2 + u3  1, when P is anywhere;
u1 � 0, u2 � 0, u3 � 0, �u1� + �u2� + �u3� = 1, when P is inside
the triangle or on the boundaries;
�u1� + �u2� + �u3� � 1, when P is outside the triangle.

APPENDIX B

MODIFYING FORMULA

The traveltime along raypath P1P2P3 in Figure 6 can be com-
uted by the equation

igure A-1. Map of area coordinates.
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T =
l1

v1
+

l2

v2
. �B-1�

o satisfy the minimum traveltime principle, the partial derivative
ormulas at the new midpoint are

	 �T

�s
	

�s=s*,t=t*�
= 0, 	 �T

�t
	

�s=s*,t=t*�
= 0. �B-2�

nother form is

��
i=1

3
xi

* − xi
�1�

v1l1
* + �

i=1

3
xi

* − xi
�3�

v1l2
* �xis

* = 0,

��
i=1

3
xi

* − xi
�1�

v1l1
* + �

i=1

3
xi

* − xi
�3�

v1l2
* �xit

* = 0, �B-3�

here

xi
* = xi

�2��s*,t*� ,

xis
* =

�xi
�2�

�s
�s*,t*� ,

xit
* =

�xi
�2�

�t
�s*,t*� ,

l1
* = l1�s*,t*�, l2

* = l2�s*,t*� , �B-4�

fter a Taylor series expansion, the variable formulas above are
hanged to the following with only first-order perturbation re-
ained:

xi
* = xi

�2��s*,t*� = xi
�2��s + �s,t + �t� � xi

�2��s,t� +
�xi

�2�

�s
�s

+
�xi

�2�

�t
�t = xi

�2� + xis
�2��s + xit

�2��t ,

xis
* = xis

�2��s*,t*� = xis
�2��s + �s,t + �t� � xis

�2��s,t� +
�xis

�2�

�s
�s

+
�xis

�2�

�t
�t = xis

�2� + xiss
�2��s + xist

�2��t ,

xit
* = xit

�2��s*,t*� = xit
�2� + xits

�2��s + xitt
�2��t ,

l1
* = l1�s*,t*� = l1�s + �s,t + �t� = l1�s,t� +

�l1

�xi
� �xi

�2�

�s
�s

+
�xi

�2�

�t
�t� = l1 +

xi
�2� − xi

�1�

l
�xis

�2��s + xit
�2��t� ,
1

l2
* = l2�s*,t*� = l2 +

xi
�2� − xi

�3�

l2
�xis

�2��s + xit
�2��t� .

�B-5�

lements in equation B-3 are substituted into equation B-5 to pro-
uce

�xis
�2� + xiss

�2��s + xist
�2��t��Pi + �xis

�2�R − Qis��s

+ �xit
�2�R − Qit��t = 0,

�xit
�2� + xits

�2��s + xitt
�2��t��Pi + �xis

�2�R − Qis��s

+ �xit
�2�R − Qit��t = 0. �B-6�

xpanding the equations and retaining only the first-order pertur-
ation results in the ultimate modifying formulas

�s =
U22d1 − U12d2

�
,

�t =
U11d2 − U21d1

�
,

� = U11U22 − U12U21, �B-7�

here

U11 = xis
�2��Qis − xis

�2�R� − xiss
�2�Pi,

U12 = xis
�2��Qit − xit

�2�R� − xist
�2�Pi,

U21 = xit
�2��Qis − xis

�2�R� − xits
�2�Pi,

U22 = xit
�2��Qit − xit

�2�R� − xitt
�2�Pi,

d1 = xis
�2�Pi,

d2 = xit
�2�Pi,

Pi =
xi

�2� − xi
�1�

v1l1
+

xi
�2� − xi

�3�

v2l2
,

Qis =
xi

�2� − xi
�1�

v1l1
Ss

�1� +
xi

�2� − xi
�3�

v2l2
Ss

�3�,

Qit =
xi

�2� − xi
�1�

v1l1
St

�1� +
xi

�2� − xi
�3�

v2l2
St

�3�,

R =
1

v1l1
+

1

v2l2
,

Ss
�1� =

xi
�2� − xi

�1�

l1
2 xis

�2�,

St
�1� =

xi
�2� − xi

�1�

l1
2 xit

�2�,
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Ss
�3� =

xi
�2� − xi

�3�

l2
2 xis

�2�,

St
�3� =

xi
�2� − xi

�3�

l2
2 xit

�2�,

xis
�2� =

�xi
�2�

�s
, xit =

�xi
�2�

�t
,

xiss
�2� =

�2xi
�2�

�s2 , xist
�2� = xits

�2� =
�2xi

�2�

�s�t
, xitt

�2� =
�2xi

�2�

�t2 .

�B-8�

The location of a midpoint has a corresponding value of s and t
n the located triangle. From the modifying formula, a modifying
s and �t can be derived, and �s + �s,t + �t� can be regarded as

he new position.
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