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Abstract
Post-critical seismic waves are widely used in crustal exploration of the seismic velocity
structure, and are gaining interest in the oil/gas seismic community to image the deeper
structure beneath the high velocity basalt layer. They are featured with their phase shifts and
strength changes, which should be taken into account in seismic data processing, such as
velocity analysis and true amplitude migration, etc. In order to simplify the exact but
complicated formula of reflection and transmission coefficients, numerous approximate
expressions for reflection and transmission coefficients for pre-critical incidence are obtained.
In the post-critical case, there is Downton’s approximation with acceptable accuracy
approximation when the velocity changes smoothly. However if the velocity model changes
rapidly, the error will be relatively very large, limiting the use of the approach. In order to
improve the post-critical approximation, we utilize Taylor expansion of ray parameters with
angle increment (compared to critical angle) in wide-angle seismic reflection and transmission
coefficients. The explicit expressions for amplitude and phase shift (time shift) for the
post-critical incident angle are obtained. Our results confirm that the wide-angle seismic
reflection/transmission phase shifts are strongly frequency dependent; phase shifts of low
frequency wide-angle seismic waves are more predominant and their correction should be
considered in seismic processing and imaging. Numerical examples demonstrate that (1) the
accuracies of these approximations are high compared to the classic Aki’s formula and
Downton’s approximation, and (2) the wide-angle effect can be effectively reduced with
phase-shift correction by utilizing our time-shift approximation to the seismic traveltimes.

Keywords: wide-angle seismic reflection/transmission, post-critical angle, amplitude, phase
shift, time shift

(Some figures may appear in colour only in the online journal)

1. Introduction

Wide-angle seismic waves result from post-critical angle
incidence at underground discontinuities, and are featured
with strong reflections which are easy to recognize in shot
gathers, especially traveltime-reduced shot gathers of deep
seismic sounding experiments (Li and Mooney 1998, Zhang
et al 2011a). Wide-angle seismic profiling has been widely

used to explore the deep crustal structure since the 1950s
(Oliver and Coggon 1976). These waves are also used
in the oil/gas industry as they can penetrate below the
high velocity basalt barrier layer formed from intrusive and
extrusive lavas (covering large areas of the earth) (Pramanik
et al 2001). In the use of wide-angle reflection/transmission
seismic waves, we need to correct for the corresponding
phase shift and amplitude change from post-critical angle
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incidence (Aki and Richards 1980). Neglecting this phase-
shift correction in wide-angle seismic profiling (whether in
a deep crustal structure or in oil/gas exploration with high
velocity overburden) will lead to errors both of objective
reflector depths and interval velocities. Usually, we call this
phenomenon the post-critical effect. The comparison with
CDP reflection images demonstrates that there is about 1–
2 km crustal thickness (Moho depth) difference between
vertical seismic reflection profiling and wide-angle seismic
profiling (Zhang et al 2000). This difference is usually
attributed to the phase picking uncertainties of intra-crustal
reflections (including Moho reflection event PmP) (Oueity
and Clowes 2010). Actually the phase shift (time shift) of
wide-angle intra-crustal reflections compared to near vertical
CDP reflections can be an alternative candidate to explain
this difference. Obtaining a formula for wide-angle seismic
phase shift is the basis to correct for the post-critical effect on
seismic imaging. Reflection/transmission coefficients (R/T
coefficients) can be calculated with exact mathematical
expressions (Aki and Richards 1980), but they are complicated.
The complication has led seismologists to derive approximate
formulae appropriate to seismic applications (Bortfeld 1961,
Richards and Frasier 1976, Wiggins et al 1984, Shuey 1985,
Ursenbach 2003a, 2003b, Wang 1999). Summarizing the
approximations above, they are almost performed on the
condition that the incident angle is small and below the
critical angle. As a result of improvements in acquisition
quality and longer spread lengths, there is interest in analysing
amplitude and time-shift behaviour up to and even beyond
the critical angle. We can expect a similar approximation
of R/T coefficients with post-critical angle incidence, which
can be effectively used in oil/gas exploration and crustal
structure (especially in the case of lower impendence contrast).
Based on Aki and Richards’s linearized approximation of PP
reflection coefficient R(θ ), Downton put forward an alternative
method to deal with post-critical R/T coefficients. When the
incident angle was beyond the critical angle, he mathematically
expressed the transmitted angle as a complex number and
substituted the average of incident and transmitted angles
for the incident angle (Downton and Ursenbach 2006). The
accuracy of his approach can be accepted for a small jump in
velocity, but if the velocity model changes rapidly, the error is
so large that the approach cannot be used.

The paper is arranged in this way: firstly, Taylor expansion
of ray parameter and horizontal slowness with angle increment
(compared to critical angle) is used in wide-angle seismic
reflection and transmission coefficients, and then the explicit
expressions for amplitude and phase shift are obtained. In order
to show the high precision of our approximation formulae, we
present the comparison of calculated amplitude and phase shift
among exact coefficient formulae (Aki and Richards 1980),
Downton’s alternative method (Downton and Ursenbach 2006)
and our approximate formulae. We also discuss the phase shift
and its correction for synthetic wide-angle reflections from
Moho discontinuity with one crustal model in China mainland.
Lastly, we present brief concluding remarks.
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Figure 1. A flat interface separating two isotropic media. The elastic
coefficients for the upper and lower media are shown in the figure.

2. Approximations of R/T coefficients and their
phase shifts

Consider a flat interface separating two isotropic media
(figure 1). A plane P wave incident on the planar interface can
generally generate four waves—a reflected P wave, a reflected
S wave, a transmitted P wave and a transmitted S wave.

The exact formulae for all the R/T coefficients are as
follows (Aki and Richards 1980) (RPP and RPS are the reflection
coefficients of the reflected PP and PS waves; TPP and TPS are
the transmission coefficients of the transmitted PP and PS
waves, respectively):

RPP(p) = E + F p2 + Gp4 − Dp6

A + Bp2 + Cp4 + Dp6
, (1a)

TPP(p) = H + I p2

A + Bp2 + Cp4 + Dp6
, (1b)

RPS(p) =
(

2qa1
Vp1

Vs1
p

)
J + K p2 − Dp4

A + Bp2 + Cp4 + Dp6
, (1c)

TPS(p) =
(

2qa1
Vp1

Vs2
p

)
L + Mp2

A + Bp2 + Cp4 + Dp6
, (1d)

where

A = (ρ2qa1 + ρ1qa2)(ρ2qb1 + ρ1qb2), (1e)

B = −4�μ(ρ2qa1qb1 − ρ1qa2qb2) + (�ρ)2

+ 4(�μ)2qa1qa2qb1qb2, (1f)

C = 4(�μ)2(qa1qb1 + qa2qb2) − 4�μ�ρ, (1g)

D = 4(�μ)2, (1h)

E = (ρ2qa1 − ρ1qa2)(ρ2qb1 + ρ1qb2), (1i)

F = −4�μ(ρ2qa1qb1 + ρ1qa2qb2) − (�ρ)2

+ 4(�μ)2qa1qa2qb1qb2, (1j)

G = 4(�μ)2(qa1qb1 − qa2qb2) + 4�μ�ρ, (1k)

H = 2(ρ2qb1 + ρ1qb2)ρ1qa1(Vp1/Vp2), (1l)
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I = −4�μ(qb1 − qb2)ρ1qa1(Vp1/Vp2), (1m)

J = −ρ2�ρ − 2ρ1qa2qb2�μ, (1n)

K = 2(ρ2 + �ρ)�μ − 4qa2qb2(�μ)2, (1o)

L = ρ1�ρ − 2ρ1qa2qb1�μ, (1p)

M = −2ρ1�μ, (1q)

with

qa1 =
√

1
/

V 2
p1 − p2, (1r)

qa2 =
√

1
/

V 2
p2 − p2, (1s)

qb1 =
√

1
/

V 2
s1 − p2, (1t)

qb2 =
√

1
/

V 2
s2 − p2, (1u)

�ρ = ρ2 − ρ1, (1v)

�μ = ρ2V
2

s2 − ρ1V
2

s1. (1w)

In the above equations, the parameter p is the ‘ray parameter’,
or the ‘horizontal slowness’, and is related to the incident
angle θ ; the quantities qa1, qa2, qb1, qb2 are called the
‘vertical slowness’ of the reflected PP wave, reflected PS wave,
transmitted PP wave and transmitted PS wave, respectively;
Vp1, Vp2, Vs1 and Vs2 are the P-wave and S-wave velocities of
the upper and lower media, respectively; ρ1 and ρ2 are the
densities; μ1 and μ2 are the shear moduli; �ρ is the density
difference and �μ is the shear modulus difference between
the two media.

For seismic waves on discontinuity in an elastic medium,
there are two kinds of critical angles, PP wave critical angle
and PS wave critical angle:

(1) ep
c = sin−1 (Vp1

Vp2

)
, for a transmissive PP wave when

Vp1 < Vp2;
(2) es

c = sin−1 (Vp1

Vs2

)
, for a transmissive PS wave when

Vp1 < Vs2.

Practically, it is common to consider PP wave critical
angle in a large-aperture seismic experiment. However, the
condition Vp1 < Vs2 is invalid in common situations, although
in deep crustal experiments, the second situation can occur.
For example, shear heating and other potential mechanisms
can reduce P-wave velocity by 10%, but keep S-wave velocity
with no change, as demonstrated by physical experiments
(Carpenter 2006). Another possibility is from oceanic plate
subduction, where sediment can subduct with solid lithosphere
to form a strength discontinuity between the sediment with
P-wave velocity Vp1 and the solid subducted plate with higher
S-wave velocity Vs2.

If the incident angle θ is larger than the critical angle, that
is θ > ep

c , qa2 becomes complex. The post-critical coefficients,
RPP, RPS, TPP and TPS, also become complex. Complex numbers
are used to contain the phase information. That is to say, the
traveltimes of PP and PS waves are featured by post-critical
phase shifts (time shifts).

In the following, we derive the approximate expression for
the phase shift. With the similarity of the derivation process,
we just take the P-P reflection coefficient RPP as an example.

Corresponding to the above-mentioned two critical
angles, we discuss the phase shift approximation in two
situations.

• Situation 1: ep
c < θ < es

c.

• Situation 2: es
c < θ < π

2 .

The above two cases are analysed mathematically, in order
to keep the vertical slowness real. For the ray parameter and
horizontal slowness, we use fourth-order Taylor expansion
respectively at the points ep

c and es
c, corresponding to situations

1 and 2:

p = δ1 + δ2(�θ ) + δ3(�θ )2 + δ4(�θ )3 + δ5(�θ )4,

p2 = α1 + α2(�θ ) + α3(�θ )2 + α4(�θ )3 + α5(�θ )4,

p4 = β1 + β2(�θ ) + β3(�θ )2 + β4(�θ )3 + β5(�θ )4,

p6 = γ1 + γ2(�θ ) + γ3(�θ )2 + γ4(�θ )3 + γ5(�θ )4, (2a)

qa1 = A0 + B0(�θ ) + C0(�θ )2 + D0(�θ )3 + E0(�θ )4,

qb1 = A1 + B1(�θ ) + C1(�θ )2 + D1(�θ )3 + E1(�θ )4,

(2b)

and

qb2 = A2 + B2(�θ ) + C2(�θ )2 + D2(�θ )3 + E2(�θ )4,

qa2 = i
√

A3 + B3(�θ ) + C3(�θ )2 + D3(�θ )3 + E3(�θ )4,

(2c)

�θ = θ − ep
c , for situation 1;

qa2 = i
√

A2 + B2(�θ ) + C2(�θ )2 + D2(�θ )3 + E2(�θ )4,

qb2 = i
√

A3 + B3(�θ ) + C3(�θ )2 + D3(�θ )3 + E3(�θ )4,

(2d)

�θ = θ − es
c, for situation 2.

The corresponding parameters δ1–δ5, α1–α5, β1–β5,

γ1–γ5, A0–E0, A1–E1, A2–E2, A3–E3 are shown in
appendices A and B respectively for situations 1 and 2.

The strength and phase shift for a reflective PP wave for
post-critical incidence can be approximated in the following
form after substituting equations (2a)–(2d) into equation (1a):

|RPP(θ )| =
√

(U1O1 + U2O2)2 + (U2O1 − U1O2)2

O2
1 + O2

2

, (3a)

ϕ(θ ) = arctan

(
U2O1 − U1O2

U1O1 + U2O2

)
. (3b)

If the frequency of the incident seismic wave is f , then the
time shift is

�t = ϕ

2π f
. (3c)

Expressions for U1, U2, O1 and O2 are shown in appendices A
and B, corresponding to situations 1 and 2.

Similar to the derivation of RPP, approximations to RPS,
TPP and TPS can be performed in the same way, and the
corresponding results can be seen in appendix C.

3. Numerical evaluation of wide-angle seismic
reflection strength and phase shift approximation

To demonstrate the accuracy of the approximation above,
we designed a model with two layers of media and one
flat boundary between them, and the related parameters to
describe the model can be seen in table 1. With this model,
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Figure 2. (a) Amplitude of RPP; (b) time shift of RPP with a frequency of 5 Hz. Comparison of the different approximations for the amplitude
and time shift of the P-P wave reflection coefficient. The exact results cover the range of incident angle from 0◦ to 90◦, as do Downton’s
results also, and ours are from the first critical angle to 90◦. The broken lines in the figure show the position of the two critical angles.
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Figure 3. Same as figure 2 but for the P-S wave reflection coefficient RPS.

Table 1. Elastic parameters for a two-layer model.

Medium Vp (km s−1) Vs (km s−1) ρ (kg m−3)

1 3500 2020 2.10
2 5500 3700 2.5

we calculated (1) their theoretical expectations with the
classic formula (Aki and Richards 1980), and the approximate
results of the reflection coefficient and phase shift with (2)
Downton’s scheme (Downton and Ursenbach 2006) and (3)
our approximation formula in equations (3a)–(3c). Figure 2
presents comparisons of amplitude and time shift (with the
wave frequency of 5 Hz) of RPP in this model. WithVp1 < Vs2 in
this model, we can observe that the reflection strength increases
abruptly at PP critical angle and PS critical angle. This strong
PS reflection at PS post-critical angle can be used to explain
bright point PS reflection observation in the INDEPTH-II

wide-angle seismic experiment (an international deep profiling
of the Himalayas and Tibetan plateau, carried out during 1994–
1995) (Makovsky et al 1996). For the comparison, the exact
results cover the domain of incident angle from 0◦ to 90◦, as do
Downton’s results also, and ours is from the first critical angle
(PP critical angle) to 90◦ (for we are only absorbed in the post-
critical R/T coefficients). Taking the PP reflection coefficient
for example (figures 2(a) and (b)), we can observe that (1)
strength and time shift calculated in Downton’s method fit well
with theoretical values when the incident angle is less than the
critical angle, but there is large error when the incident angle
is larger than the critical angle. For the strength (figure 2(a)),
Downton’s result increases rapidly with the incident angle,
much larger than the theoretical result, and when it is beyond
the second critical angle (PS critical angle), the error of
strength even exceeds 200%. Such low accuracy cannot be
accepted. For the time shift (figure 2(b)), it is shown that there is
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Figure 4. Same as figure 2 but for the P-P wave transmission coefficient TPP.
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Figure 5. Same as figure 2 but for the P-S wave transmission coefficient TPS.

Figure 6. A crustal structure. Layer thickness, P- and S-wave velocities and density parameters are shown in the figure. The model consists
of five layers, with the top (first) layer as sediment, and the interface at a depth of 32 km is the Moho discontinuity between the crust and the
upper mantle. The source is placed at the surface, and the observational system is deployed to record the seismic signal. The maximum
offset is 300 km.
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(a)

(b)

(c)

Figure 7. The horizontal components of effective amplitude (a), phase shift (b) and time shift (c) for each seismic phase. The reflection
strength (amplitude), phase and time increase abruptly when the offset is 11.3, 72.6 and 97.1 km, respectively, for P1, P3 and Pm, as marked
in the figure.

time delay in the post-critical case, which becomes larger with
the increase of incident angle. Compared to the theoretical time
delay, Downton’s is much smaller with the error remaining up
to 15%. (2) At the post-critical incident angle, wide-angle
seismic reflection strength and time shift calculated with our
approximation formula match well with theoretical curves,
with the error remaining lower than 5%. The relationship
between reflection strength, phase shift and incidence angle
(>critical angle) with our approximate formula is well kept
as the theoretical expectation. These results suggest that the
accuracies of our approximations from second- and fourth-
order Taylor expansions are acceptable. The comparisons for
RPS, TPP and TPS as respectively shown in figures 3–5 can

produce similar conclusions of high approximation accuracy
to that about the PP reflection strength/phase shift.

4. Synthetic seismograms and effect of wide-angle
phase shift

In the following, we collect a crustal structure model to
evaluate the effect of wide-angle phase shift on a wide-angle
seismic experiment (figure 6). The model is the average crustal
velocity structure of North China craton in China continent
(Li and Mooney 1998, Zhang et al 2011b). The crustal
structure, layer thickness, P- and S-wave velocities and density
parameters are shown in figure 6. The model consists of five
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(a)

(b)

(c)

Figure 8. Same as figure 7, but for vertical components.

layers, with the top (first) layer as sediment, and the interface
at a depth of 32 km is the Moho discontinuity between the
crust and the upper mantle. The source is placed at the surface,
and a two-side observational system is deployed to record the
seismic signal. The maximum offset is 300 km. From this
velocity model, the critical angle for the reflection P1 from the
sediment bottom is 62.08◦, the critical angle for the reflection
P3 from the third interface is 61.08◦ and the critical angle for
the reflection Pm from the Moho is 53.16◦. Since the third
layer is a low velocity layer, there is no seismic reflection with
the post-critical angle incidence from interface P2.

Then, the amplitude and phase shift (time shift) of wide-
angle seismic reflections from each interface (figures 7(a)–
(c) and 8(a)–(c)) were calculated on horizontal- and vertical-
component seismic gathers. We can observe that both the
reflection strength (amplitude) and phase increase abruptly

when the offset is 11.3, 72.6 and 97.1 km respectively for the
reflections P1, P3 and Pm.

Synthetic seismograms were calculated with finite-
difference code (Virieux 1984, Lan and Zhang 2011a, 2011b).
In the calculation, the predominant frequency of the seismic
source is 5 Hz. Figures 9 and 10 display seismic records of
horizontal and vertical components, respectively. With these
synthetic seismograms, we can observe several seismic events,
such as the reflections from (1) the bottom of the sediment,
(2) the Moho interface and (3) other intra-crustal interfaces.
The real curves on seismic gathers are the pick-up of these
reflection events (with picked travel-times Tp). We regard
Tp as the exact travel-time of these seismic events (which
may include the wide-angle effect from full wave equation
modelling for discussion). In order to evaluate the phase
shift effect of wide-angle seismic reflections, we calculate
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(a)

(b)

(c)

(d )

Figure 9. (a) The seismogram of horizontal components in the case of incident P wave and frequency 5 Hz. In the seismogram, we can
observe the reflections of P1, P3 and Pm. The critical offsets of these reflections are shown. (b) The partly magnified diagram of P1 within
the offset range of 8–26 km. There is travel-time difference (marked in hatching) between Tp (picked travel-time, marked in real curves) and
Tr (travel-time of reflections calculated with classical ray tracing, marked in real curves) when the offset is 11.3 km. (c) The partly
magnified diagram of P3 within the offset range of 95–120 km. There is travel-time difference when the offset is 94.3 km. (d) The partly
magnified diagram of Pm within the offset range of 70–90 km. There is travel-time difference when the offset is 94.3 km.
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(a)

(b)

(c)

(d )

Figure 10. Same as figure 9, but for vertical components.

travel-times Tr (marked with dashed curves) of these
reflections with the classical ray tracing technique (Cerveny
and Firbas et al 1984). By comparing travel-times Tp and Tr
in figures 9 and 10, we can observe their travel-time difference

which is a result of wide-angle phase shift. Tp differs from Tr

when the offset is larger than 11.3 km for reflection P1 from

the sediment bottom, 94.3 km for the third reflection P3 and

71.2 km for the Moho reflection Pm. The travel-time difference
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between Tp and Tr can be observed within the offset range of
8–26 km for P1 event, 95–120 km for P3 event and 70–90 km
for PmP event (the details can be seen in figures 9(b)–(d)
and 10(b)–(d)). For the given model, the phase shifts of the
wide-angle seismic events P1, P3 and PmP are calculated with
our approximate formulae. The calculated time shifts, shown
in figures 7(c) and 8(c), are exactly well approached to the
observed travel-time difference between Tp and Tr shown in
figures 9 and 10. Summing up the time shifts (computed by our
approximation formulae) and the ray traced travel-times, the
results well match the picked travel-times, which highlights
the efficiency of wide-angle seismic time-shift (phase-shift)
correction in the interpretation of deep seismic sounding data,
in which crustal thickness or crustal velocity is conventionally
over- or underestimated (with neglect of the wide-angle effect).

5. Conclusion remarks

We present the approximation formula of time shift (phase
shift) for post-critical incidence angles, with Taylor expansion
of the ray parameter and horizontal slowness in the exact R/T
equations (Aki and Richards 1980). Here explicit formulae
of the reflection/transmission strength and time shift for
post-critical incidence are obtained and their accuracies in
approximation are evaluated through numerical experiments
with comparisons of the wide-angle effects calculated with
our approximation scheme, the exact ones (Aki and Richards
1980) and those computed with Downton’s method (Downton
and Ursenbach 2006). The comparison results demonstrate
that (1) the precision is high for our approximation scheme
of wide-angle seismic reflection, and (2) the wide-angle effect
can be approximated with higher precision by fourth-order
Taylor expansion than by second-order Taylor expansion in
ray parameter and horizontal slowness.
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Appendix A. Derivation of approximate expressions
for all coefficients, RPP, RPS, TPP and TPS (situation 1)

Some variables made repeated use of are as follows:

a = Vp1

Vp2
, b =

√√√√1 − V 2
p1

V 2
p2

, c = Vs1

Vp1
,

d = Vs2

Vp1
, e = Vs2

Vp2
, g =

√
1 − V 2

p1

V 2
s2

. (A.1)

We start our work with the exact R/T coefficient formulae
given by Aki and Richards (1980), as is shown in equation (1).

For the ray parameters and horizontal slowness, we make
fourth-order Taylor expansions as

p = δ1 + δ2(�θ ) + δ3(�θ )2 + δ4(�θ )3 + δ5(�θ )4,

p2 = α1 + α2(�θ ) + α3(�θ )2 + α4(�θ )3 + α5(�θ )4,

p4 = β1 + β2(�θ ) + β3(�θ )2 + β4(�θ )3 + β5(�θ )4,

p6 = γ1 + γ2(�θ ) + γ3(�θ )2 + γ4(�θ )3 + γ5(�θ )4,

(A.2)

qa1 = A0 + B0(�θ ) + C0(�θ )2 + D0(�θ )3 + E0(�θ )4,

qb1 = A1 + B1(�θ ) + C1(�θ )2 + D1(�θ )3 + E1(�θ )4,

(A.3)

qb2 = A2 + B2(�θ ) + C2(�θ )2 + D2(�θ )3 + E2(�θ )4,

qa2 = −i
√

A3 + B3(�θ ) + C3(�θ )2 + D3(�θ )3 + E3(�θ )4.

(A.4)

Note that �θ = θ − ep
c , θ is the incident angle and ep

c is the
reflection PP critical angle. The coefficients of each expansion
are

δ1 = a

Vp1
, δ2 = b

Vp1
, δ3 = −a

2Vp1
,

δ4 = − b

6Vp1
, δ5 = a

24Vp1
; (A.5)

α1 = a2

V 2
p1

, α2 = 2ab

V 2
p1

, α3 = 1 − 2a2

V 2
p1

,

α4 = − 4ab

3V 2
p1

, α5 = 2a2 − 1

3V 2
p1

; (A.6)

β1 = a4

V 4
p1

, β2 = 4a3b

V 4
p1

, β3 = 6a2 − 8a4

V 4
p1

,

β4 = 4(3ab − 8a3b)

3V 4
p1

, β5 = 3(1 − 2a2) − 8(3a2b2 − a4)

3V 4
p1

;
(A.7)

γ1 = a6

V 6
p1

, γ2 = 6a5b

V 6
p1

,

γ3 = 15a4 − 18a6

V 6
p1

, γ4 = 4(5a3b − 9a5b)

V 6
p1

,

γ5 = 5(3a2b2 − a4) − 9(5a4b2 − a6)

V 6
p1

; (A.8)

A0 = b

Vp1
, B0 = −a

Vp1
,

C0 = −b

2Vp1
, D0 = a

6Vp1
, E0 = b

24Vp1
; (A.9)

A1 = 1

Vs1

√
1 − a2c2,

B1 = − abc2

Vs1

√
1 − a2c2

,

C1 = c2(2a2 − 1 − a4c2)

2Vs1(
√

1 − a2c2)3
,
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D1 = 1

Vs1

abc4(4 − 3c + 3a2c − 5a2c2 + a4c4)

6(
√

1 − a2c2)5
,

E1 =
c2(4−3c2−8a2+16a2c2−12a2c4−4a4c2+10a4c4−4a6c4+a6c6)

24Vs1(
√

1−a2c2)7
;

(A.10)

A2 = 1

Vs1

√
1 − a2d2,

B2 = − abd2

Vs1

√
1 − a2d2

,

C2 = d2(2a2 − 1 − a4d2)

2Vs1(
√

1 − a2d2)3
,

D2 = 1

Vs1

abd4(4 − 3d + 3a2d − 5a2d2 + a4d4)

6(
√

1 − a2d2)5
,

E2 =
d2(4−3d2−8a2+16a2d2−12a2d4−4a4d2+10a4d4−4a6d4+a6d6)

24Vs1(
√

1−a2d2)7
;

(A.11)

A3 = 0, B3 = 2ab

V 2
p1

, C3 = 1 − 2a2

V 2
p1

,

D3 = − 4ab

3V 2
p1

, E3 = 2a2 − 1

3V 2
p1

. (A.12)

Substituting equation (2) into equation (1), we can obtain
the approximate formulae as

RPP(θ ) ≈ U1(θ ) + iU2(θ )

O1(θ ) + iO2(θ )
,

RPS(θ ) ≈ W1(θ ) + iW2(θ )

O1(θ ) + iO2(θ )
,

TPS(θ ) ≈ X1(θ ) + iX2(θ )

O1(θ ) + iO2(θ )
,

TPP(θ ) ≈ V (θ )

O1(θ ) + iO2(θ )
.

(A.13)

The expansion terms of equation (3) are as follows:

U1(θ ) = U11 + U12
(
θ − ep

c

) + U13
(
θ − ep

c

)2

+ U14
(
θ − ep

c

)3 + U15
(
θ − ep

c

)4
,

U2(θ ) = [U21 + U22
(
θ − ep

c

) + U23
(
θ − ep

c

)2

+U24
(
θ − ep

c

)3 + U25
(
θ − ep

c

)4
]Q2,

O1(θ ) = O11 + O12
(
θ − ep

c

) + O13
(
θ − ep

c

)2

+ O14
(
θ − ep

c

)3 + O15
(
θ − ep

c

)4
,

O2(θ ) = [O21 + O22
(
θ − ep

c

) + O23
(
θ − ep

c

)2

+ O24
(
θ − ep

c

)3 + O25
(
θ − ep

c

)4
]Q2,

W1(θ ) = W11 + W12
(
θ − ep

c

) + W13
(
θ − ep

c

)2

+W14
(
θ − ep

c

)3 + W15
(
θ − ep

c

)4
,

W2(θ ) = [W21 + W22
(
θ − ep

c

) + W23
(
θ − ep

c

)2

+W24
(
θ − ep

c

)3 + W25
(
θ − ep

c

)4
]Q2,

X1(θ ) = X11 + X12
(
θ − ep

c

) + X13
(
θ − ep

c

)2

+ X14
(
θ − ep

c

)3 + X15
(
θ − ep

c

)4
,

X2(θ ) = [
X21 + X22

(
θ − ep

c

) + X23
(
θ − ep

c

)2

+ X24
(
θ − ep

c

)3 + X25
(
θ − ep

c

)4]
Q2,

V (θ ) = V11 + V12
(
θ − ep

c

) + V13
(
θ − ep

c

)2

+V14
(
θ − ep

c

)3 + V15
(
θ − ep

c

)4
. (A.14)

Here the detailed expressions are not given because of
space limitations; they can be obtained by contacting the
corresponding author.

Appendix B. Derivation of approximate expressions
for all coefficients, RPP, RPS, TPP and TPS (situation 2)

The derivation in situation 2 is similar to that in situation 1.
The approximate expressions are similar to those in

equation (3), but for TPP it is

TPP(θ ) ≈ V1(θ ) + iV2(θ )

O1(θ ) + iO2(θ )
. (B.1)

The used expressions and variables are as follows:

O1 = [
O11 + O12

(
θ − es

c

) + O13
(
θ − es

c

)2 + O14
(
θ − es

c

)3

+ O15
(
θ − es

c

)4] + [
O21 + O22

(
θ − es

c

) + O23
(
θ − es

c

)2

+O24
(
θ − es

c

)3 + O25
(
θ − es

c

)4]
Q2pQ2s,

O2 = Q2p
[
O31 + O32

(
θ − es

c

) + O33
(
θ − es

c

)2 + O34
(
θ − es

c

)3

+ O35
(
θ − es

c

)4] + Q2s
[
O41 + O42

(
θ − es

c

)
+ O43

(
θ − es

c

)2 + O44
(
θ − es

c

)3 + O45
(
θ − es

c

)4]
Q2pQ2s,

(B.2)

U1 = [
U11 + U12

(
θ − es

c

) + U13
(
θ − es

c

)2 + U14
(
θ − es

c

)3

+U15
(
θ − es

c

)4] + [
U21 + U22

(
θ − es

c

) + U23
(
θ − es

c

)2

+U24
(
θ − es

c

)3 + U25
(
θ − es

c

)4]
Q2pQ2s,

U2 = Q2p
[
U31 + U32

(
θ − es

c

) + U33
(
θ − es

c

)2 + U34
(
θ − es

c

)3

+U35
(
θ − es

c

)4] + Q2s
[
U41 + U42

(
θ − es

c

)
+U43

(
θ − es

c

)2 + U44
(
θ − es

c

)3 + U45
(
θ − es

c

)4]
, (B.3)

W = [
W11 + W12

(
θ − es

c

) + W13
(
θ − es

c

)2 + W14
(
θ − es

c

)3

+W15
(
θ − es

c

)4] + [
W21 + W22

(
θ − es

c

) + W23
(
θ − es

c

)2

+W24
(
θ − es

c

)3 + W25
(
θ − es

c

)4]
Q2pQ2s, (B.4)

X1 = [
X11 + X12

(
θ − es

c

) + X13
(
θ − es

c

)2

+ X14
(
θ − es

c

)3 + X15
(
θ − es

c

)4]
,

X2 = [
X21 + X22

(
θ − es

c

) + X23
(
θ − es

c

)2

+ X24
(
θ − es

c

)3 + X25
(
θ − es

c

)4]
Q2p, (B.5)

V1 = [
V11 + V12

(
θ − es

c

) + V13
(
θ − es

c

)2

+V14
(
θ − es

c

)3 + V15
(
θ − es

c

)4]
,

V2 = [
V21 + V22

(
θ − es

c

) + V23
(
θ − es

c

)2

+V24
(
θ − es

c

)3 + V25
(
θ − es

c

)4]
Q2s. (B.6)

492



Phase shift approximation for the post-critical seismic wave

Appendix C. New approximate formulae for
reflection and transmission of plane seismic waves

If the frequency of the incident seismic wave is f , we can
obtain the strength approximation formula for the reflective
PS wave,

|RPS(θ )| =
√

(W1O1 + W2O2)2 + (W2O1 − W1O2)2

O2
1 + O2

2

, (C.1)

and the time shift,

�t = ϕ

2π f
, (C.2)

where

ϕ(θ ) = arctan

(
W2O1 − W1O2

W1O1 + W2O2

)
. (C.3)

For the transmissive PP wave, the strength is

|TPP(θ )| =
√

(V1O1 + V2O2)2 + (V2O1 − V1O2)2

O2
1 + O2

2

, (C.4)

and the time shift (the frequency of incident seismic wave is
f ) is

�t = ϕ

2π f
, (C.5)

where

ϕ(θ ) = arctan

(
V2O1 − V1O2

V1O1 + V2O2

)
. (C.6)

For the transmissive PS wave, the strength is

|TPS(θ )| =
√

(X1O1 + X2O2)2 + (X2O1 − X1O2)2

O2
1 + O2

2

, (C.7)

and the time shift (the frequency of incident seismic wave is
f ) is

�t = ϕ

2π f
, (C.8)

where

ϕ(θ ) = arctan

(
X2O1 − X1O2

X1O1 + X2O2

)
. (C.9)

Expressions for O1, O2, W1, W2, V1, V2, X1, X2 are shown in
appendices A and B, respectively, corresponding to situations 1
and 2.
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