项目办联系方式
  • 秘书:赵亚楠
  • 电话:18811386654
  • 邮箱:zhaoyanan@mail.iggcas.ac.cn
  • 地址:北京市朝阳区北土城西路19号
成果展示
OGR:Isotope geochemistry and geochronology of the Niujuan silver deposit, northern Nort...
发布日期:2017-12-05

  Abstract:

  The Niujuan breccia-type silver deposit forms part of the North Hebei metallogenic belt along the northern margin of the North China Craton. The Hercynian Baiyingou coarse-grained granite and the Yanshanian Er’daogou fine-grained granite are the major Mesozoic intrusions exposed in this region. Here we investigate the salient characteristics of the mineralization and evaluate its genesis through zircon U-Pb and fluorite Sm-Nd age data, and Pb, S, O, H, He and Ar isotope data. The orebodies of the Niujuan silver deposit are hosted in breccias, which contain angular fragments of the Baiyingou and Er’daogou granitoids. The δ34S values of pyrite from the silver mineralized veins range from 2.4‰ to 5.3‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide minerals show ranges of 16.837-16.932, 15.420-15.501 and 37.599-37.950, respectively. The 3He/4He and 40Ar/36Ar ratios of the fluids trapped in pyrite are 0.921-4.81Ra and 299.34-303.84, respectively. The δ18O and δ18Dw values of the ore-forming fluids range from 0.6 ‰ to -4.15 ‰ and from -119.4‰ to -98.7‰, respectively. Our isotopic data suggest that the ore-forming fluids were originally derived from the subvolcanic plutons and evolved into a mixture of magmatic and meteoric water during the main hydrothermal stage. The ore-forming materials were primarily derived from the lower crust with limited incorporation of mantle materials. The emplacement time of the Er’daogou granite is constrained by LA-ICP-MS zircon U-Pb geochronology at 145.5 ±2.1 Ma. Five fluorite samples from the last hydrothermal stage yielded a Sm-Nd isochron age of 139.2 ± 3.8 Ma, indicating the upper age limit for the silver mineralization. These ages correlate with the formation of the Niujuan deposit in an extensional setting associated with the closure of the Mongol-Okhotsk Ocean and the subduction of the Paleo-Pacific oceanic plate beneath the North China Craton. 

该文章由“华北克拉通成矿系统的深部过程与成矿机理”第一资助。