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ABSTRACT

A method for the efficient computation of multifre-
quency focal beams for 3D seismic acquisition geometry
analysis has been developed. By computing them for all
the frequency components of seismic data, single-frequency
focal beams can be extended to multifrequency focal
beams. However, this straightforward method involves con-
siderable computer time and memory requirements, espe-
cially in complex media settings. Therefore, we propose
a rapid 3D multifrequency focal beam method in which
only a few single-frequency focal beam computations are
followed by a number of smart interpolations. The 3D
wavefield extrapolation in the focal beam analysis is con-
ducted by the combined applications of a 3D degenerate
Fourier migrator and a 3D Born-Kirchhoff interpolation
operator, a process that reduces the computational cost
for complex media. The multifrequency focal beam analy-
sis is applied to a 3D model from an oil field of China,
demonstrating how spatial sampling differences affect seis-
mic imaging.

INTRODUCTION

An ideal seismic acquisition survey, consisting of a dense grid
(“carpet”) of shots and detectors, can produce and record the ideal
seismic wavefield perfectly. However, due to the constraints of ex-
ploration time and budget, a sparse geometry (such as a parallel,
orthogonal, or other irregular geometry) is often adopted in practical
seismic exploration applications. Sparse geometries, while reducing
exploration cost, can cause uneven sampling and should be
assessed for its sampling performance prior to acquisition. Accord-
ing to the seismic value chain (Berkhout, 2004), which represents

the cyclic interaction between seismic acquisition, structural ima-
ging, and reservoir characterization, we need to design economical
acquisition geometries that potentially yield the best images in
terms of spatial resolution and amplitude accuracy, as well as
the best reservoir models that allow accurate estimates of recover-
able reserves.
In conventional survey design, which is based on the common

midpoint (CMP) analysis for a horizontally layered earth, the qual-
ity of an acquisition geometry is generally judged by such proper-
ties as CMP fold, offset distribution, and azimuth distribution; see
Cordsen et al. (2000) and Vermeer (2002) for details. For a complex
subsurface structure, a common reflection point (CRP) analysis can
be used to evaluate the number and angle of rays passing through a
target bin by ray tracing in a velocity model. As for CMP analysis,
CRP analysis also produces the attributes of fold, offset, and azi-
muth in target bins (Slawson et al., 1994; Muerdter and Ratcliff,
2001; Chang et al., 2002). Furthermore, now that prestack migration
is in the mainstream of industry techniques for seismic data proces-
sing, 3D seismic survey analysis is often based on the performance
of prestack migration, rather than traditional stacked seismic data. A
survey analysis based on prestack migration is able to provide a
direct estimate of the final image quality at a particular target area,
rather than the indirect attributes computed at the surface by a tradi-
tional survey analysis.
Focal beam analysis (Berkhout et al., 2001; Volker et al., 2001;

Volker, 2002) is a method that relates prestack migration theory
(Berkhout, 1987) directly to the assessment of seismic acquisition
geometries. As opposed to spatial resolution analysis (Vermeer,
1999; Gibson and Tzimeas, 2002; Tzimeas, 2004; Xie et al.,
2006) based on the theory of Beylkin (1985), which combines de-
tector and source information, focal beams analyze the detector and
source parts of an acquisition geometry separately. Volker's formu-
lations are applicable to homogeneous and heterogeneous media
(Volker et al., 2001). Van Veldhuizen (2006) and Van Veldhuizen
et al. (2008) developed a model-based implementation of the focal
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beam analysis method for inhomogeneous media by recursive depth
extrapolation (Holberg, 1988) in the space-frequency domain.
Focal beam analysis is generally implemented in the frequency

domain, and then the single-frequency focal beams can be simply
extended to multifrequency focal beams by directly combining all
the frequency components of band-limited seismic data (Van
Veldhuizen et al., 2008). This straightforward approach involves
a large calculation burden in the case of many frequencies and com-
plex media, and hence, is often substantially restrained. In this
paper, we propose a rapid method for the computation of 3D multi-
frequency focal beams in which a few single-frequency focal beam
computations are followed by a number of interpolations for a range
of frequencies and a practically defined seismic acquisition geome-
try. The 3D wavefield extrapolation in our focal beam computation
is conducted by combined application of a 3D degenerate Fourier
(DF) migrator and a 3D Born-Kirchhoff (BK) interpolation opera-
tor, which reduces the computational cost in complex media. The
combined 3D DF-BK extrapolator was extended from the 2D case
(Fu, 2004; Fu et al., 2006). It extrapolates wavefields through a
thick slab and then interpolates wavefields in small layers. This ap-
proach has several advantages: (1) fast wavefield extrapolation
through high-contrast media obtained by only using fast Fourier
transforms (FFTs), (2) large-step extrapolation to further reduce
computational costs, and (3) the BK interpolation accounting not
only for obliquity, spherical-spreading, and wavelet-shaping fac-
tors, but also for the relative slowness perturbation in a laterally
heterogeneous media. These advantages significantly improve the
efficiency of the 3D multifrequency focal beam analysis that
commonly involves extremely heavy computations. Finally, the
multifrequency focal beam analysis is applied to a 3D model
from an oil field in China, demonstrating how spatial sampling
differences affect seismic imaging.

MULTIFREQUENCY FOCAL BEAM

The focal beam analysis method (Berkhout et al., 2001; Volker
et al., 2001; Volker, 2002) originates from the migration of seismic
reflection data using the common focus point concept (Berkhout,
1982; 1997). Seismic migration is the process of extracting the
reflectivity information from the recorded seismic data. According
to Berkhout et al. (2001), seismic migration corresponds to double
focusing the seismic data according to

Pðzm; zmÞ ¼ Fðzm; z0ÞPðz0; z0ÞFðz0; zmÞ; (1)

where, Pðz0; z0Þ ¼ Dðz0ÞWðz0; zmÞRðzm; zmÞWðzm; z0ÞSðz0Þ is a
frequency slice of the primary wavefield that is recorded at the sur-
face at depth z0,Dðz0Þ is the detector matrix, Sðz0Þ is the source ma-
trix, Rðzm; zmÞ is the reflectivity matrix containing angle-dependent
reflectivity information, Fðz0; zmÞ is the source-focusing matrix that
removes wave propagationWðzm; z0Þ between the reflection level at
depth zm and source level at depth z0, Fðzm; z0Þ is the detector-
focusing matrix that removes wave propagationWðz0; zmÞ between
the reflection level at depth zm and detection level at depth z0, and
lateral coordinates (x, y) are implicit here. Note that the focusing
matrices may include terms for correcting the imprint of the acquisi-
tion geometry in Dðz0Þ and Sðz0Þ. Let us, for the moment, assume
that such corrections are not implemented, such that in our analysis
the imprint of the acquisition geometry becomes clear. In that case,
because the focusing process is the reverse of the wave-propagation
process, the focusing matrix is approximately equal to the conjugate
complex of the propagation matrix (Berkhout, 1987).
We aim at analyzing the impact of acquisition geometry on the

migration result and therefore assume the subsurface reflectivity to
be unity

Rðzm; zmÞ ¼ Iðzm; zmÞ; (2)

where Iðzm; zmÞ is an identity matrix. In that case, the double-
focusing migration (equation 1) yields the following spatial resolu-
tion matrix

Bðzm; zmÞ ¼ ½Fðzm; z0ÞDðz0ÞWðz0; zmÞ�½Wðzm; z0ÞSðz0ÞFðz0; zmÞ�
¼ BDðzm; z0ÞBSðz0; zmÞ; (3)

where BDðzm; z0Þ and BS ðz0; zmÞ are the focal detector and focal
source matrix, respectively. Note that in the ideal case Bðzm; zmÞ
equals Iðzm; zmÞ. However, in practice Bðzm; zmÞ quantifies the im-
print of the acquisition geometry on the reflectivity information
(caused by the sparse sampling of the sources and detectors as given
by Sðz0Þ end Dðz0Þ, respectively).
According to Volker (2002), the continuous form of the spatial

resolution function (equation 3) for a single temporal frequency
component ω can be derived by considering the impact of a 3D
target point rf ¼ ðxf; yf; zmÞ and a neighbor point r ¼ ðx; y; zmÞ
surrounding rf (Figure 1)

Bðr; rf;ωÞ ¼ BD ðr; rf;ωÞBS ðr; rf;ωÞ; (4)

where BD ðr; rf;ωÞ and BS ðr; rf;ωÞ are the focal detector and focal
source beam, respectively. These are defined as

�
BD ðr; rf;ωÞ ¼

R
Fðr; rfÞWðrr; rfÞDðrrÞdrr

BS ðr; rf;ωÞ ¼
R
Fðr; rsÞWðrs; rfÞSðrsÞdrs . (5)

DðrrÞ is a detector sampling operator at rr ¼ ðxr; yr; z0Þ. SðrsÞ is a
source sampling operator at rs ¼ ðxs; ys; z0Þ. Fðr; rrÞ describes in-
verse wavefield propagation from the detectors at rr to all subsur-
face points r around the focal point rf .Wðrr; rfÞ describes forward
wavefield propagation from the focal point rf to all detectors rr.
Fðr; rsÞ describes inverse wavefield propagation from the sources
at rs to all subsurface points r around the focal point rf . Wðrs; rfÞ
describes forward wavefield propagation from sources rs to the
focal point rf .
Transforming the detector and source beams to the Radon do-

main, and extracting a horizontal section at τ ¼ 0, Volker (2002)
derived the amplitude versus ray parameter (AVP) function as

Figure 1. Schematic diagram of focal beams. Wave propagates
form source grid-point at the target at rf to detectors at the surface.
The measured wave field is inverse-extrapolated to evaluate the
focusing properties of the detector geometry at the target.
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B̃ðpx; pyÞ ¼ B̃Dðpx; pyÞB̃Sð−px;−pyÞ; (6)

where, px and py are the lateral component of ray parameters,
B̃Dðpx; pyÞ and B̃S ðpx; pyÞ are the Radon transforms of the detec-
tor and source beams, respectively.
Because seismic waves are never monochromatic, but always

contain a frequency bandwidth, the single-frequency focal beams
should be extended to multifrequency focal beams. In the following
section, we present a rapid algorithm for the computation of multi-
frequency focal beams.
For 3D homogeneous and heterogeneous media, Volker (2002)

introduced a simplified focal beam computation algorithm in the
wavenumber and Radon domain, respectively. According to this
author, the detector beam can be efficiently approximated by a
Taylor series expansion, leading to the following expression making
use of 2D spatial Fourier transforms for 3D homogeneous media

BDðr; rf;ωÞ ≈
1

4π2

ZZ
exp½iðkxΔxþ kyΔyÞ�D 0ðkx; ky;ωÞdkxdky;

(7)

where kx and ky are the horizontal wavenumber components,
Δ x ¼ x − xf , Δy ¼ y − yf and D 0ðkx; ky;ωÞ is the spatial Fourier
transform of DðrrÞ for the temporal frequency ω.
For 3D heterogeneous media, the detector beam can be approxi-

mated by a Taylor series expansion, resulting in the following ex-
pression that makes use of 2D Fourier transforms in the 2D Radon
domain

BDðr; rf;ωÞ

≈
ω2

4π2

ZZ
exp½iωðpxΔxþ pyΔyÞ�D 0 0ðpx; py;ωÞdpxdpy; (8)

where D 0 0ðpx; py;ωÞ is the Radon transform of DðrrÞ for the tem-
poral frequency ω. Similar expressions also can be derived for the
source beam and the spatial resolution function.
Volker (2002) developed equations 7 and 8 and established a ra-

pid focal beam analysis algorithm in the wavenumber domain.
Different from Volker (2002), we have endeavored to establish a
conversion relationship between the focal beams under different
frequencies using the same equations 7 and 8. Setting dkxdky ¼
k2 ðzm−z0Þ2

Δr2f
dxrdyr, equation 7 becomes

BDðr; rf;ωÞ

≈
k2

4π2

ZZ
exp½iðkxΔxþ kyΔyÞ�D 0ðkx; ky;ωÞ

ðzm − z0Þ2
Δr2f

dxrdyr; (9)

where, k is the wavenumber, and Δrf ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxf − xrÞ2 þ ðyf − yrÞ2 þ ðzm − z0Þ2

q
. Therefore, the focal detec-

tor beams under different frequencies satisfy, within a degree of
confidence, the following relationship for homogeneous and hetero-
geneous media

BDðΔx;Δy; rf; cωÞ ≈
1

c2
BDðcΔx; cΔy; rf;ωÞ; (10)

where c is a constant ð0 < c < 1Þ, Δx ¼ x − xf , and Δy ¼ y − yf .
According to equation 10, the focal detector beam at frequency

cω can be derived directly from the focal detector beam at

frequency ω via interpolation. Similar to the focal detector beams,
the relationship for the focal source beams and the combined focal
beams (resolution function and AVP function) for different frequen-
cies can also be approximated as follows

BS ðΔx;Δy; rf; cωÞ ≈
1

c2
BSðcΔx; cΔy; rf;ωÞ; (11)

BðΔx;Δy; rf; cωÞ ≈
1

c2
BðcΔx; cΔy; rf;ωÞ: (12)

It indicates that focal beams for a frequency range can be ap-
proximated by conducting a single-frequency focal beam analysis
and compute the other frequencies via interpolation operations (see
Figure 2). Different from the directional illumination analysis using
beamlet decomposition and propagation (Wu and Chen, 2006), the
multifrequency focal beam (Figure 2) cannot be obtained by di-
rectly summing frequencies. Therefore, we use all the frequency
components of the focal beams to carry out an inverse Fourier trans-
form to the time domain and extract the t ¼ 0 slice as the result of
the multifrequency focal beam. If N is the number of frequency
components, this approach is roughly N times faster than the direct
calculation of each frequency component because the computa-
tional cost is heavily weighted on the wavefield simulation. If
needed, we can always increase the accuracy of the method by com-
puting more single-frequency beams and interpolate less — at the
cost of computational efficiency.

DEGENERATE FOURIER WAVEFIELD
EXTRAPOLATION PLUS BORN-KIRCHHOFF

WAVEFIELD INTERPOLATION

To implement focal beam analysis, equation 5 needs to be eval-
uated. In doing this, we should choose a method to propagate
waves, as accurately as possible, for the estimation of the forward
propagation operators W and the focusing operators F. The com-
putational burden for the multifrequency focal beam analysis de-
pends greatly on the efficiency of the chosen method for
numerical wave propagation. To achieve an acceptable trade-off be-
tween numerical accuracy and computation time for given computer
resources, we have developed a method for fast numerical wave
propagation that combines a 3D DF operator with a 3D BK wave-
field interpolation. This DF-BK method can significantly enhance

Multifrequency 
focal beams
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Figure 2. An efficient algorithm for multifrequency focal beams.
According to equation 10, the focal beams at a frequency of ω2,
ω3, and ωn can be derived directly by interpolating the focal beams
at a frequency of ω1. Then the focal beams for a given frequency
range can be derived approximately by executing one single-
frequency focal beam analysis with interpolation operations. An in-
verse Fourier transform is applied to convert all the frequency
components into time domain.
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the efficiency of 3D multifrequency focal beam analyses for com-
plex media.

One-way Lippmann-Schwinger integral equation

The 3D DF-BK propagator can be derived from the generalized
Lippmann-Schwinger integral equation (Fu et al., 1997) which is
equivalent to the Helmholtz equation and describes two-way wave
propagation in heterogeneous media. To formulate one-way ap-
proximations of the generalized Lippmann-Schwinger integral
equation, we slice heterogeneous media horizontally into a stack
of heterogeneous slabs. Similar to the 2D case (Fu, 2006), applying
the plane-wave representation of the Hankel function to the general-
ized Lippmann-Schwinger integral equation, the 3D one-way
Lippmann-Schwinger integral equation can be formulated inside
a heterogeneous slab (Figure 3)

ðkz þ k 0
zÞ uðkx; ky; zþ ΔzÞ − k0

2
Fxyðkx; ky; zþ ΔzÞ

¼ ½2kzuðkx; ky; zÞ þ
k0
2
Fxyðkx; ky; zÞ� expðikzΔzÞ; (13)

where u is the seismic displacement vector, kx, ky and kz are the
components of the wavenumber, k 0

z is the vertical wavenumber
of neighboring media below the slab, k0 ¼ ω∕v0 is the reference
wave number, ω which is the radian frequency, and v0 is the refer-
ence velocity, and Fxyðkx; ky; zÞ ¼ FTxyfik0½nðrÞ − 1�uðrÞg with
FTxy being the horizontally oriented 2D Fourier transform, and
nðrÞ ¼ v0∕vðrÞ being the refraction index of an acoustic wave.
One-way Lippmann-Schwinger integral equation accounts for the
accumulated effect of forward scattering by volume heterogeneities
inside a slab and the transmission/refraction between different slabs
on wave amplitude and phase.
Equation 13 can be simplified into the following form by using

the Born approximation (refer to Appendix A for details)

uðkx; ky; zþ ΔzÞ

¼
�
uðkx; ky; zÞ þ

1

k̄z
Fxyðkx; ky; zÞ

�
expðikzΔzÞ: (14)

The dispersion relation corresponding to equation 14 is

k̄z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄2x − k̄2y

q
þ ðn − 1Þð1 − k̄2x − k̄2yÞ−1∕2; (15)

where we normalize the wavenumbers by k̄x ¼ kx∕k0, k̄y ¼ ky∕k0,
and k̄z ¼ kz∕k0, and n is the different constants of the refractive
index nðrÞ to avoid the convolution operation.

3D DF operator

Using k̄x ≤ 1 and k̄y ≤ 1 (Huang et al., 1999) for postcritical
wave propagation, the term ð1 − k̄2x − k̄2yÞ−1∕2 can be approximated
as follows

ð1 − k̄2x − k̄2yÞ−1∕2 ¼ 1 −
X∞
j¼1

ajðk̄2x þ k̄2yÞ
1þ bjðk̄2x þ k̄2yÞ

; (16)

where the coefficients aj and bj are independent of the refraction
index n. Then, we have

k̄z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄2x − k̄2y

q
þ ðn − 1Þ

− ðn − 1Þ
X∞
j¼1

ajðk̄2x þ k̄2yÞ
1þ bjðk̄2x þ k̄2yÞ

: (17)

Equation 17 is a DF operator (or separation-of-variables operator)
that leads to a pure Fourier-transform-based matching solution for
wavefield extrapolation (Fu et al., 2006 for the 2D case). The coef-
ficients aj and bj in equation 17 are determined numerically by a
least-squares optimization procedure by which optimum coeffi-
cients can be searched for that minimize frequency dispersion
errors.
Because of the mathematical properties and approximation beha-

vior of rational functions (Trefethen and Halpern, 1986; Bamberger
et al., 1988), equation 17 should be well-posed theoretically, espe-
cially for lower-order terms. Equation 17 with an expansion of
infinite series needs to be truncated for numerical computations.
In practice, the first-order equation or, at most, the second-order
equation is adequate for common one-way wave propagation in
large-contrast media with large propagation angles (see more detail
in the following section).
Using the exponential approximation eiξ ≈ 1þ iξ, the regional

separation-of-variables operator expressed by equation 17 yields
the following one-way propagation equation

uðkx; ky; zþ ΔzÞ

¼
�X∞
j¼1

ajðk̄2x þ k̄2yÞ
1þ bjðk̄2x þ k̄2yÞ

þ
�
1 −

X∞
j¼1

ajðk̄2x þ k̄2yÞ
1þ bjðk̄2x þ k̄2yÞ

�

exp½ik0Δzðn − 1Þ�
�
uðkx; ky; zÞ expðik0ΔzÞ: (18)

Setting Cj ¼ aj ðk̄2x þ k̄2yÞ∕½1þ bj ðk̄2x þ k̄2yÞ� and taking the first-
order approximation, equation 18 becomes

uðkx; ky; zþ ΔzÞ
¼ fC1 þ ð1 − C1ÞFTxy½uðkx; ky; zÞ expðik0ΔzÞ�g: (19)

Figure 3. The geometry of a heterogeneous slab with the thickness
Δz. r is the position vector and vðrÞ is the velocity. The slab occu-
pying a region Ω is bounded by the upper boundary Γ0 and the
lower boundary Γ1.
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We see that the first-order DF operator is actually a linear interpola-
tion in the wavenumber domain between two split-step terms. It
significantly improves on the split-step Fourier (SSF) method
(Stoffa et al., 1990) for large lateral variations at the cost of one
more Fourier transform in each slab. The accuracy of the DF meth-
od will be discussed in detail in a following section.

3D BK operator for wavefield interpolation

One-way propagation by equation 14 using Fourier transforms is
actually unstable because of the singularity that occurs when k̄z ≈ 0

(large-angle waves). However, one-way propagation using its
space-domain version is unconditionally stable using diffraction
summation (Fu, 2004 for the 2D case). The space-domain version
of equation 14 can be obtained using Fourier transforms

uðkx; ky; zþ ΔzÞ

¼
Z

ik0
2πΔr

expðik0Δzðn − 1ÞÞ expðik0ΔrÞ uðkx; ky; zÞ dxdy; (20)

where Δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 þ ðy1 − y2Þ2 þ Δz2

p
and each downward-

continued output trace at ðx2; y2Þ is calculated by integration over
the input traces at ðx1; y1Þ. This space-domain diffraction formula-
tion is a BK integral expression, which differs from the traditional
Kirchhoff propagator,

uðkx; ky; zþ ΔzÞ ¼
Z

ik0
2πΔr

cos θ expðik0ΔrÞ uðkx; ky; zÞdxdy;
(21)

θ being the angle between the normal to the input interface and the
traveltime path, in that it accounts not only for the obliquity, sphe-
rical-spreading, and wavelet-shaping factors, but also for relative
slowness perturbations in laterally heterogeneous media. The
accuracy of 3D BK operator will be discussed in detail in the
following section.

Accuracy analysis of DF and BK operators

Using a small-angle assumption ð1 − k̄2x − k̄2yÞ−1∕2 in equation 15
yields the following SSF dispersion equation

k̄z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄2x − k̄2y þ ðn − 1Þ

q
: (22)

For strongly contrasting media, various hybrid methods that in-
corporate the FD scheme into the Fourier matching solutions
have been proposed, for example, the split-step FD propagator
(Thomson, 1990), the split-step Padé solution (Collins, 1993),
and the Fourier finite-difference migrator (FFD) (Ristow and Ruhl,
1994). These rational approximations to the square-root function
dispersion relation can be generally expressed as

k̄z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄2x − k̄2y

q
þ ðn − 1Þ −

X∞
j¼1

ajðnÞ ðk̄2x þ k̄2yÞ
1þ bjðnÞ ðk̄2x þ k̄2yÞ

;

(23)

with its coefficients ajðnÞ and bjðnÞ varying with the refraction
index n. We see that equation 23 hierarchically consists of a re-
ference phase-shift solution (the first term), a split-step correction
term (the second term), and a parabolic correction term (the last
term). The crosscoupling of kz and n in the last term shows that
equation 22 is not a degenerative operator expression and con-
sequently requires an extra implicit FD implementation. The
FFD method, despite its high numerical accuracy for strong ve-
locity variations, causes grid dispersion, 3D splitting error, and
computational burden. In contrast, DF operator with constant
coefficients aj and bj independent of n in equation 17 leads
to a pure Fourier-transform-based matching solution for wavefield
extrapolation.
To conduct a quantitative assessment of the DF and BK opera-

tors, Figure 4 shows the angular spectra of the first-order DF op-
erator and the BK operator, as compared with those of the FFD
and SSF propagators under a 10% relative phase error. As ex-
pected, the first-order DF operator is accurate for all values of
the acoustic refraction index, almost approaching the accuracy
of the FFD. The accuracy of the BK operator is between SSF
and DF, implying an acceptable application for wavefield interpo-
lation in small layers inside a thick extrapolated slab. This accu-
racy comparison of the first-order DF propagators with other
Fourier propagators demonstrates a quick convergence of the re-
gional DF approximation in the low-order terms. Furthermore, the
extrapolation operators have been designed for a maximum wave-
propagation angle of 60°. Because the DF method only uses Four-
ier transforms for propagation and migration of wavefields, the
grid dispersion and 3D splitting error (Zhang et al., 2007) that
occurs with the 3D FFD method can be avoided.

Implementation of multifrequency focal beam
analysis by the DF-BK operator

Computation of focal beams consists of the following steps.

• Select a grid point at the target in the subsurface.
• Simulate the angle-independent grid-point response by

the DF-BK propagator from this grid point to the acquisition

Figure 4. Comparison of angular spectra of various dispersion re-
lations: the Born, the Born-Kirchhoff (BK), the split-step Fourier
(SSF), the Degenerate Fourier (DF), and the Fourier finite-
difference (FFD) under a 10% relative phase error (Fu, 2006).
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level. As shown in Figure 5, we first conduct a large-step
extrapolation of the wavefield through a thick slab by the
DF propagator using equation 19, and then interpolate the
large-step extrapolation results in small heterogeneous layers
inside the slab by the BK operator using equation 20.

• Apply the acquisition geometry by selecting traces according
to: (i) source locations for the computation of focal source
beams and (ii) detector locations for the computation of focal
detector beams.

• Apply the focusing from the acquisition level to a volume
around the target point using: (i) the inverse wavefield ex-
trapolator Fðr; rrÞ in equation 5 for focusing on the detector
side and (ii) the inverse wavefield extrapolator Fðr; rsÞ in
equation 5 for focusing on the source side.

• Substitute the detector and source focal beams in equations 5
into equations 4 and 6 to compute the spatial resolution and
AVP imprints.

• Interpolate the single-frequency focal beams (see Figure 2)
to a frequency range by equation 12 and sum all the fre-
quency components.

To avoid the repetition of wavefield simulations for forward and
backward extrapolations, we first apply the wavefield simulation
to the deepest target layer by the DF-BK propagator, and then ex-
tract data for focal beam analysis. This approach is relatively
efficient because the computational cost is heavily weighted on
the wavefield simulation. Note that the evaluated volume around
a target point should be sufficiently large to include the grid-point
locations at which the main imaging artifacts such as spatial aliasing
may occur (Van Veldhuizen et al., 2008).

EXAMPLES

Focal beams for individual frequencies

This section presents an example of detector beams for a land-
based seismic acquisition geometry. The geometry consists of eight
detector lines, each 1500 m in length, with 200 m spacing between
lines and a 100 m interval between detector points along the line.
The geometry template is not rolled along during the acquisition.
The target point is located at a depth of 1000 m below the center
of the spread. The detector beam for a frequency of 10 Hz are di-
rectly calculated under a homogeneous medium condition using
equation 5, with the result shown in Figure 6a. For reference,
the synthetic results for a frequency of 10 Hz, calculated from de-
tector beams of 20, 30, and 40 Hz, are shown in Figure 6b, 6c, and
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Figure 5. Schematic diagram of the DF-BK propagator. We first
conduct a large-step extrapolation of wavefields through a thick slab
by the DF propagator using equation 19, and then interpolate the
extrapolation results in small heterogeneous layers inside the slab
by the BK operator using equation 20. uðx; y; zÞ is the seismic dis-
placement vector with ω is the radian frequency.
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Figure 6. Detector beam in homogeneous media at 10 Hz
(a) directly calculated using equation 4, and, using equation 10,
(b) obtained from the 20 Hz beam, (c) the 30 Hz beam, and
(d) and the 40 Hz beam. The colors indicate the amplitudes on a
linear scale.
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Figure 7. The revised 3D SEG/EAGE Salt Model
(Aminzadeh et al., 1997) with total dimensions of
2.5 kmðxÞ × 2.5 kmðyÞ × 1 kmðzÞ. Grid spacing
is 10 m for both lateral directions and 5 m in
the vertical direction. The target point is located
at the point (1250, 1250, 500) near the salt bottom
(black star in right images). Velocities vary from
1500 m∕s in the upper layer to 4482 m∕s in the
bottom layer. The geometry consists of eight de-
tector lines (white line in left image), each 1500 m
in length, with 200 m spacing between lines and a
100 m interval between detector points along the
line.
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6d, respectively. These figures show that for a homogeneous
medium the focal beam obtained from the direct calculation is al-
most identical to those computed from other single-frequency
beams. This example confirms that the approximation by equation 7
has a high accuracy for a homogeneous medium.
The revised 3D SEG/EAGE Salt Model (Aminzadeh et al., 1997;

see Figure 7) with total dimensions of 2.5 kmðxÞ × 2.5 kmðyÞ×
1 kmðzÞ is taken as a complex example of a heterogeneous medium
assemblage. We reduced the grid spacings to 10 m for both lateral
directions and 5 m for the vertical direction, making them eight
times smaller than the original size. The drastic changes of the ve-
locity with a smaller grid spacing cause a more complex model than
the original one. The same acquisition geometry used in the pre-
vious example also has been chosen for this model. The target point
is located at ðx; y; zÞ ¼ ð1250; 1250; 500Þ m, near the salt bottom
(black star in right image of Figure 7). Velocities vary from
1500 m∕s in the upper layer to 4482 m∕s in the salt. The detector
beam at 10 Hz is calculated directly by the DF-BK propagator as-
suming heterogeneous media conditions, with the result shown in
Figure 8a. Note that the undersampling of detectors leads to appar-
ent spatial aliasing in the y-direction. Similarly, the synthetic results,
obtained from the detector beams at 20, 30, and 40 Hz using
equation 8, are shown in Figure 8b, 8c, and 8d, respectively. We
can see that the results obtained by both the direct calculation
and the computation using other single-frequency beams are similar
for heterogeneous media, especially in the main lobe, but with some
differences in the side lobes because of the sensitivity differences of
the 20, 30, and 40 Hz beams to local variations in the model. The
agreement between the direct calculation and interpolation confirms
the validity of the interpolation technique for heterogeneous media,
even in this complex model. Consequently, we can apply the ap-
proach to multifrequency focal beam.

Focal beams for a range of frequencies

The acquisition geometry and velocity model of the previous ex-
ample is used again. Figure 9b shows the multifrequency detector
beam for 10–40 Hz with a dominant frequency is 25 Hz obtained by
interpolation according to equation 8 using the single-frequency
result (see Figure 9a) at 40 Hz for a homogeneous medium. For

reference, Figure 9c shows the synthetic result for 10–40 Hz
obtained by directly summing frequencies. Figure 9d, 9e, and 9f
show the same beams for a heterogeneous medium. Similar to
the single-frequency results (Figure 9a, 9b, and 9c), there is appar-
ent spatial aliasing in the y-direction in the multifrequency focal
beams (Figure 9d, 9e, and 9f). As expected, the multifrequency fo-
cal beam, shown in Figure 9b, 9c, 9e, and 9f, due to its larger tem-
poral frequency range than the single-frequency focal beams shown
in Figure 9a and 9d, are characterized by a higher spatial resolution
despite its lower dominant frequency. In addition, the side-lobe
energy distribution of the multifrequency focal beams is more
diffuse than that of the single-frequency focal beams because of
destructive interference effects of the various frequencies involved.
The agreements between Figure 9b and 9c or Figure 9e and 9f
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Figure 8. Detector beam in heterogeneous media at 10 Hz
(a) directly calculated using equation 4, and using equation 10,
(b) obtained from the 20 Hz beam, (c) the 30 Hz beam, and (d)
the 40 Hz beam. The colors indicate the amplitudes on a linear
scale.
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Figure 9. Single- and multifrequency detector
beams. (a) Detector beam at 40 Hz in homoge-
neous medium, (b) Detector beam for 10–40 Hz
by interpolation at 40 Hz in homogeneous media,
(c) The sum of single-frequency detector beams
for 10–40 Hz in homogeneous medium, (d) Detec-
tor beam at 40 Hz in heterogeneous medium,
(e) Detector beam for 10–40 Hz by interpolation
at 40 Hz in heterogeneous medium, and (f) The
sum of single-frequency detector beams for
10–40 Hz in heterogeneous medium. The colors
indicate the amplitudes on a linear scale.
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demonstrate that the multifrequency focal beam analysis proposed
in this article can be extended to any frequency range through
single-frequency interpolation without greatly increasing computa-
tional cost.

Focal beam analysis for a real model

In this section, we examine an example of a real 3Dmodel from an
oilfield inChina.Themodel, showninFigure10with totaldimensions

of12.5 kmðxÞ × 5 kmðyÞ × 5.2 kmðzÞ,containsa
number of layers with complex fault structures.
Velocities vary from 2100 m∕s in the upper
layer to 5500 m∕s in the bottom layer. Grid
spacing in the model is 25 m for both lateral
directions and 10 m for the vertical direction.
The target point is located at the point (3125,
1250, 2313). Two orthogonal acquisition tem-
plates, corresponding to acquisition Scheme I
and Scheme II, respectively, shown in Figure 11,
were adopted with the detailed parameters
listed in Table 1. The geometry templates were
rolled 20 times longitudinally and three times
transversely during the acquisition. Four spread
cables were rolled transversely each time with
full fold being 160. The dominant frequency
used in the analysis is 20 Hz.
To reduce computational cost, we first

performed wavefield simulations for the whole
model using the DF-BK propagator, and then ex-
tracted data for focal beam analysis. The multi-
frequency focal beam analyses were conducted
for the frequency range 10–35 Hz for Schemes
I and II (see Figure 11). The resulting focal de-
tector and source beams and their Radon-domain
versions, the spatial resolution function, and the
AVP imprints are shown in Figures 12 (Scheme
I) and 13 (Scheme II) for a hydrocarbon target
depth of 2313 m. We see that the main lobes
in the detector beams, the source beams and
the spatial resolution function are almost identi-
cal for these two schemes in the space domain,

implying they have a similar spatial resolution. The aliasing effects
along the x-direction which don't appear on Scheme I are especially
heavy in Scheme II for the reason of the profound difference of the
detector point spacing. Scheme I shows a more uniform range of the
AVP imprints for the x-direction and has a more concentrated en-
ergy response in the spatial resolution function with smaller side
lobes. The smaller detector interval used in Scheme I, also make
the angle-dependent amplitude information at the target point in
the x-direction more uniform. Therefore, Scheme I may be more
favorable for seismic imaging and amplitude inversion. In conclu-
sion, with increasing channel intervals, as expected, the spatial
resolution of the acquisition geometry is not affected, but the
side-lobe energy increases and the AVP imprint for the x-direction
becomes more nonuniform.
Multifrequency focal beams for the frequency range 10–35 Hz

were computed for Schemes I and II on an Intel Xeon X5355 pro-
cessor with a 2.66 GHz CPU, and 16 GB RAM. The CPU run time
for the 3D model with 501 × 201 × 209 grid blocks was about
8 hours.

DISCUSSION

In the previous section, we discussed fast multifrequency focal
beam analysis of seismic acquisition geometries. The method
aims to assess the image quality for a given acquisition geometry

Figure 11. Two orthogonal acquisition templates of Scheme I (top)
and II (bottom). The square ▪ represents source and the cross þ
represents detector. The geometry consists of 16 detector lines, each
4000 m in length, with 50 m or 100 m spacing between lines and a
100 m interval between detector points along the line. The detailed
acquisition parameters are given in Table 1.
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Figure 10. 3D real velocity model of an oilfield in China. The model with total dimen-
sions of 12.5 kmðxÞ × 5 kmðyÞ × 5.2 kmðzÞ, contains a number of layers with complex
fault structures. Velocities vary from 2100 m∕s in the upper layer to 5500 m∕s in the
bottom layer. Grid spacing in the model is 25 m for lateral and vertical directions.
The target point is located at the point (3125, 1250, 2313) (black star in bottom images).
The geometries consist of 16 detector lines (white rectangle in top image).
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Table 1. Parameters of two acquisition geometry (Scheme I and II).

Survey Geometry

Detector
point

distance

Source
point

distance

Detector
line

distance

Source
line

distance Bin size Folds

Inline
rolling
distance

Crossline
rolling
distance

Scheme I 16L3S80R 50 m 100 m 100 m 100 m 25 m × 50 m 160 100 m 400 m

Scheme II 16L3S40R 100 m 100 m 100 m 100 m 50 m × 50 m 160 100 m 400 m
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Figure 12. Multifrequency focal beams at depth
2313 m for acquisition Scheme I. (a) Detector
beam, (b) Detector beam in the Radon domain,
(c) Source beam, (d) Source beam in the Radon
domain, (e) Spatial resolution function, and
(f) AVP imprints. The colors indicate the ampli-
tudes on a linear scale.
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Figure 13. Multifrequency focal beams at depth
2313 km for acquisition Scheme II (a) Detector
beam, (b) Detector beam in the Radon domain,
(c) Source beam, (d) Source beam in the Radon
domain, (e) Spatial resolution function, and
(f) AVP imprints. The colors indicate the ampli-
tudes on a linear scale.
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over the full seismic frequency bandwidth. We compute the
multifrequency beams from only one single-frequency beam.
Therefore, our method is considerably faster than the direct com-
putation of multifrequency beams from all single-frequency
beams involved, which makes multifrequency focal beam analysis
feasible.
Note that the main factor affecting the computational efficiency

of multifrequency focal beam analysis is the method chosen to
simulate forward and inverse wave propagation, respectively. To
achieve an acceptable trade-off between numerical accuracy and
computation time for given computer resources, we introduced
the DF-BK method for fast numerical wave propagation; this
combines the 3D DF operator and the 3D BK wavefield
interpolation.
The size of the extrapolation step for the two operators is impor-

tant to ensure the accuracy of the extrapolation. Because the DF
method only uses Fourier transforms for the propagation of wave-
fields, we can choose a large extrapolation step size to simulate the
passage of a wave through a thick slab without concern for grid
dispersion. Fu (2004) demonstrated that the ideal time-domain step
size of the BK method for the very complex model like SEG/EAGE
Salt Model is 32 ms, which indicates that the ideal step size in the
spatial domain is variable. The step of the DF-BK method greatly
depends on the BK operator used in the wavefield interpolation in
small layers, which have a higher step standard than the DF
operator.
The velocity model in our method is a macrovelocity model.

Therefore, an imprecise macrovelocity model may cause inexact
results (Van Veldhuizen et al., 2008). If the uncertainty in the
macrovelocity model is large, we should use a number of different
scenarios to analyze the acquisition geometry.

CONCLUSION

In this paper, we propose a method for the efficient computation
of 3D multifrequency focal beams, in which only one single-
frequency focal beam computation is required, followed by a num-
ber of interpolations. Conventional single-frequency focal beams
can therefore be extended to a certain frequency range without
greatly increasing computation costs.
The 3D wavefield extrapolation in our focal beam computation is

conducted by the combined application of a 3D DF migrator and a
3D BK interpolation operator, which reduces computational costs
for complex media.
We applied our method to a 3D model from an oil field in

China. Because the multifrequency focal beams have a wider
temporal frequency band than the single-frequency focal beams,
their side-lobe energy distribution is more diffuse than that of the
single-frequency focal beams. This is caused by destructive inter-
ference of the different frequency components involved. As ex-
pected, the main lobes in the focal beams are almost identical for
schemes with different spatial sampling intervals, but with the
same aperture, implying that they have a similar spatial resolu-
tion. However, the scheme for the smaller channel intervals shows
a more uniform AVP imprint for the inline direction and it has
smaller side lobes in the spatial resolution function. Therefore,
the scheme with the smaller channel intervals is more favorable
for seismic imaging and amplitude inversion.
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APPENDIX A

BORN DISPERSION RELATIONSHIP FOR THE
ONE-WAY APPROXIMATION SOLUTION

We normalize the wavenumbers k̄x ¼ kx∕k0, k̄y ¼ ky∕k0, and
k̄z ¼ kz∕k 0

0, where k 0
0 is the background wavenumber of adja-

cent media.
For convenience, we take the refractive index nðrÞ of the slab

(Figure 3) as different constants n to avoid the convolution opera-
tion in Fðkx; ky; zþ ΔzÞ, implying that the following analysis with-
in the Fourier domain proceeds by decomposing the heterogeneous
slab into a series of heterogeneous slabs. In this sense, equation 13
can be written as

uðkx; ky; zþ ΔzÞ
�
1 −

ik0ΔzOðnÞ
2ðk̄z þ k̄ 0

zÞ
�

¼ uðkx; ky; zÞ
�
1þ ik0ΔzOðnÞ

2ðk̄z þ k̄ 0
zÞ
�
expðikzΔzÞ; (A-1)

where OðrÞ is the relative slowness perturbation defined as OðrÞ ¼
nðrÞ − 1 with the refractive index nðrÞ ¼ v0∕vðrÞ and i is the ima-
ginary unit. Equation A-1 can be written as

uðkx; ky; zþ ΔzÞ

¼ uðkx; ky; zÞ exp
�
i2 arctan

k0ΔzOðnÞ
2ðk̄z þ k̄ 0

zÞ
�
expðikzΔzÞ: (A-2)

Using the Born approximation, we obtain

arctan
k0ΔzOðnÞ
2ðk̄z þ k̄ 0

zÞ
¼ k0ΔzOðnÞ

2ðk̄z þ k̄ 0
zÞ
: (A-3)

Substituting equation A-4 into equation A-3 gives

uðkx; ky; zþ ΔzÞ

¼ uðkx; ky; zÞ exp
�
ik0ΔzOðnÞ
ðk̄z þ k̄ 0

zÞ
�
expðikzΔzÞ: (A-4)

From equation A-5, we obtain the following Born dispersion rela-
tionship for the one-way approximation solution equation 14 to the
heterogeneous slab.

k̄z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄2x − k̄2y

q
þ 2ðn − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k̄2x − k̄2y
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄ 02

x − k̄ 02
y

q
(A-5)
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Let k̄x ≈ k̄ 0
x and k̄y ≈ k̄ 0

y without considering the refraction wave,
and then substitute them in equation A-6 to yield the following dis-
persion equation

k̄z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̄2x − k̄2y

q
þ ðn − 1Þð1 − k̄2x − k̄2yÞ−1∕2: (A-6)
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