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S U M M A R Y
Due to the influence of variations in landform, geophysical data acquisition is usually subsam-
pled. Reconstruction of the seismic wavefield from subsampled data is an ill-posed inverse
problem. Compressive sensing (CS) can be used to recover the original geophysical data from
the subsampled data. In this paper, we consider the wavefield reconstruction problem as a CS
and propose a piecewise random subsampling scheme based on the wavelet transform. The
proposed sampling scheme overcomes the disadvantages of uncontrolled random sampling.
In computation, an l1-norm constrained trust region method is developed to solve the CS
problem. Numerical results demonstrate that the proposed sampling technique and the trust
region approach are robust in solving the ill-posed CS problem and can greatly improve the
quality of wavefield recovery.
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1 I N T RO D U C T I O N

In seismology, due to limitations of the observations, the observed data are incomplete, for example, some traces are lost. In that situ-
ation, a key obstacle is how to invert the model using only incomplete, subsampled data (Herrmann & Hennenfent 2008). Restoration
of the original wavefield from incomplete observed data is an ill-posed problem in general. Recently, the recovery of seismic wavefield based
on compressive sensing (CS) was developed (Herrmann & Hennenfent 2008). Meanwhile, two main problems are how to establish a proper
mathematical CS model and how to solve the minimization model.

For solving a CS problem, there are many methods available such as the (orthogonal) matching pursuit method (Chen et al. 1998; Tropp
& Gilbert 2007), interior point (IP) solution method (Wang et al. 2011) , operator splitting method (Wang 2011), pre-conditioning conjugate
gradient method (Kim et al. 2007) and the gradient projection method (Figueiredo et al. 2007; Ewout & Michael 2008). The gradient descent
methods usually yield a local solution (Yuan 1993). In geophysics, we are required to find a global optimization solution of the minimization
model. Therefore, proper globally convergent optimized algorithms are urgently needed. To obtain a global minimizer, we develop an l1-norm
constrained trust region method in this paper. The trust region method was proved to be a regularization method for ill-posed inverse problems
(Wang & Yuan 2005), and hence can be employed to solve ill-posed wavefield restoration problems based on CS. To solve for a Lagrangian
parameter of the trust region subproblem, we propose a Newton’s method which possesses quadratic convergence rate. Numerical experiments
on signal processing and seismic wavefield restoration problem indicate the robustness and applicability of our algorithms.

2 C S T H E O RY

Signal acquisition systems based on the Nyquist–Shannon sampling theorem require that the sampling rate needed to recover a signal without
error is twice the bandwidth. This sampling theorem is hard to satisfy in practice. As an alternative, CS has recently received a lot of attention
in the signal and image processing community. Instead of relying on the bandwidth of the signal, the CS uses the basic assumption: sparsity.
The sparsity can lead to efficient estimations and compression of the signal via a linear transform, for example, sine, cosine, wavelet and
curvelet transforms (Herrmann et al. 2008). The method involves taking a relatively small number of non-traditional samples in the form
of projections of the signal onto random basis elements or random vectors (Donoho 2006; Candes et al. 2006; Candes & Wakin 2008).
Therefore, if the signal has a sparse representation on some basis, it is possible to reconstruct the signal using few linear measurements.
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2.1 Sparse transform

For a signal x in N-dimensional space, we have M observation data di = Aix, i = 1, 2, . . . , M , where Ai for each i is a row vector, which
represents the impulse response of the ith sensor. The product of Ai with x yields the ith component of data d. Denote A = [A1, A2, . . . , AM ]T ,
the observation data can be reformulated as d = Ax. The aim of the compressive sensing is to use limited observations di (i = 1, 2, . . . , M)
with M � N to restore the input signal x.

Suppose x is the original wavefield that can be spanned by a series of orthogonal bases � i(t). These bases for all i constitute an orthogonal
transform matrix � such that

x(t) = (�m)(t) =
∑

i

mi�i (t), (1)

where mi = (x, � i). Using operator expression, m = �∗x. The vector m is thought of as the sparse or compressive expression of the signal x.
Letting L = A�, the reconstruction problem of the sparse signal m reduces to solving a simple problem d = Lm. Note that if mi is the weight
or coefficient of linear combinations for the signal x, the reconstruction of the signal x in turn becomes to find the coefficient vector m.

There are many ways to choose an orthogonal transform matrix based on some orthogonal bases, for example, sine curve, wavelet,
curvelet and framelet and so forth (Herrmann et al. 2008). As we are mainly concerned with new methods to solve the linear system d = Lm
in this paper, we choose a simple wavelet orthogonal bases to form the transform matrix �.

2.2 Relations with Tikhonov regularization

The CS is closely related with Tikhonov’s regularization for solving ill-posed problems (Wang 2007). Let us begin with a compact problem

Lm = d, (2)

where L is a compact operator (e.g. a finite rank measurement matrix) maps m from parameter space into observation space. One may readily
see that the problem (2) can be regarded as a forward model to generate seismic data: m(t) represents the model or reflectivity and L the
scattering matrix that generates the data d. Problem (2) is usually ill-posed due to the fact that existence, uniqueness and stability of the
solution may be violated. Conventional methods for solving such an ill-posed problem are Tikhonov’s regularization (Tikhonov & Arsenin
1977),

min J α
Tikh[m] = 1

2
‖Lm − d‖2

L2
+ α�[m], (3)

where α > 0 is the regularization parameter and �[m] is the stabilizer which provides some a priori constraints on the solution. Tikhonov’s
regularization method is usually used for solving non-sparse problems, and has also been used in solving sparse problems with proper choice
of �[m].

2.3 Minimization in l0 space

A natural model to satisfy the sparse solutions of the linear system Lm = d is the equality constrained minimization model with l0 quasi-norm:

‖m‖l0 −→ min, subject to Lm = d, (4)

where ‖ · ‖l0 is defined as: ‖x‖l0 = {num(x �= 0), for all x ∈ R
N }, where num(x �= 0) denotes the cardinality of non-zero components of

the vector x. Minimization of ‖x‖l0 means the number of non-zero components of x to be minimal. It is well known that the minimization of
‖x‖l0 is an NP-Hard problem, that is, optimization algorithms solving the l0 minimization problem cannot be finished in polynomial times.
This indicates that this model is doomed to be infeasible in practice.

2.4 Minimization in l1 space

Because of the numerical infeasibility of the l0 minimization problem, we relax it to solve the approximation model based on l1 norm.

‖m‖l1 −→ min, subject to Lm = d. (5)

The presence of the l1 term encourages small components of m to become exactly zero, thus promoting sparse solutions. Introducing the
Lagrangian multiplier λ, eq. (5) is equivalent to the following unconstrained problem:

‖Lm − d‖2
l2

+ λ‖m‖l1 −→ min . (6)

The minimization model based on l1 quasi-norm approximates the minimization model based on l0-norm quite well, whereas the sparsity is
retained (Figueiredo et al. 2007; Ewout & Michael 2008; Cao et al. 2011).
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2.5 Minimization in lp–lq space

In Wang et al. (2009), the authors proposed a general lp–lq model for solving multichannel ill-posed image restoration problem,

J α[m] := 1

2
‖Lm − d‖p

l p
+ α

2
‖m‖q

lq
−→ min, for p, q ≥ 0, (7)

which includes most of the regularization models thus far. Straightforward calculation yields the gradient and Hessian (the matrix of the
second-order partial derivatives) of Jα[m] as

gradJα [m] = 1
2 pLT

⎡
⎢⎢⎢⎢⎢⎢⎣

|r1|p−1sign(r1)

|r2|p−1sign(r2)

...

|rM |p−1sign(rm)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ 1
2 αq

⎡
⎢⎢⎢⎢⎢⎢⎣

|m1|q−1sign(m1)

|m2|q−1sign(m2)

...

|mn|q−1sign(mn)

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

and

HessJα [m] = 1

2
p(p − 1)LT diag(|r1|p−2, |r2|p−2, · · · |rm |p−2)L + 1

2
αq(q − 1)diag(|m1|q−2, |m2|q−2, · · · , |mn|q−2), (9)

respectively, where r = (r1, r2, . . . , rM )T = Lm − d is the residual, sign(·) denotes a function which returns −1, 0 or +1 when the numeric
expression value is negative, zero or positive, respectively, diag(v) is the diagonal matrix whose ith diagonal entry is the same as the ith
component of the vector v. Evidently, when p = 2 and q = 0 or q = 1, the lp–lq model becomes the l0 minimization model or the l1 minimization
model, respectively. We remark that the lp–lq regularization model does not require the convexity of the objective function, hence could be
used to solve inverse problems with complex structure.

3 S O LV I N G T H E C S M O D E L

3.1 Classical solution methods

Several optimization algorithms have been developed to solve the l1 minimization model (5), for example, the basis pursuit denoising (BPDN)
criterion (Chen et al. 1998; Tropp & Gilbert 2007) and the least absolute shrinkage and selection operator (LASSO, Tibshirani 1996). Both
BPDN and LASSO approaches can reduce to the regularizing problem (6). Many methods can be involved to solve (6), for example, conjugate
gradient methods with pre-conditioning techniques (Kim et al. 2007), gradient projection methods (Dai & Fletcher 2005; Figueiredo et al.
2007; Wang & Ma 2007; Ewout & Michael 2008). The BPDN problem with ‖Lm − d‖2

l2
= δ = 0 (δ is the upper bound of the norm of the

misfit) is equivalent to (5), a particular method called the IP solution method can be employed (Wang et al. 2007, 2011). However, the IP
solutions may be physically meaningless for geophysical problems. In addition, (orthogonal) matching pursuit method, a popular method in
engineering, can also be used for solving a sparse recovery problem (Chen et al. 1998; Tropp & Gilbert 2007). The method greedily picks up
a series of columns of the measurement matrix as atoms and applies the Gram–Schmidt orthogonalization upon chosen atoms for efficient
computation of projections. However, this method is non-related with optimization.

Recalling that the original problem (2) is ill-posed and has infinite solutions if the number of observations is insufficient, therefore
theoretically, the above-mentioned methods using only the gradient information usually give local solutions. In geophysics, we are eager to
find a global optimized solution. Therefore, it is desirable to find methods that give a global minimum.

Figure 1. Random sampling: the solid circle (yellow one) represents receivers and the hollow circle (white one) means no receivers. Large gap occurs for
some sampling points.

Figure 2. Piecewise random subsampling: the solid circle (yellow one) represents receivers and the hollow circle (white one) means no receivers. Large gaps
are controlled for any sampling points.

C© 2011 The Authors, GJI, 187, 199–213

Geophysical Journal International C© 2011 RAS
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3.2 Trust region method

3.2.1 Trust region scheme

Trust region methods have been widely used for solving non-linear problems, and provide globally convergent solutions (Yuan 1993). Using
the notations in the optimization community, we consider the optimization problem

min
x∈X

J (x), (10)

where J (x) is the objective function about the variable x in its domain of definition X . Refer to our problem, the objective function is Jα[m].
At each iteration, a trial step is calculated by solving the subproblem

min
ξ∈X

ψk(ξ ) := (gradk(J ), ξ ) + 1

2
(Hessk(J )ξ, ξ ), (11)

subject to ‖ξ‖ ≤ 	k, (12)

where gradk(J ) is the gradient of J at the kth iterative point xk ,

grad(J )(x) = d

dx
J (x) = ∇ J (x), (13)

Hessk(J ) is the Hessian of J at the kth iterative point xk ,

Hess(J )(x) = ∇2 J (x), (14)

and 	k is the trust region radius. The trust region subproblem (11) and (12) is an approximation to the original optimization problem (10)
with a trust region constraint which prevents the trial step being too large.
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Figure 4. Comparison of input and restored random signals.
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One may readily see that the minimal problem (10) can be solved by the Gauss–Newton method, that is, solving the following problem
at the kth iteration:

Hessk(J )ξ = −grad(J )k, xk+1 = xk + ξ.

However, the method is unstable for ill-posed problems and converges locally (Wang 2007).
At each iteration, a trust region algorithm generates a new point in the trust region, and has the procedure to determine the acceptance

and rejection of the new point. At each iteration, the trial step ξ k is normally calculated by solving the trust region subproblem (11) and (12).
Generally, a trust region algorithm uses

rk = Aredk

Predk
(15)

to decide whether the trial step ξ k is acceptable and how the next trust region radius is chosen, where

Predk = ψk(0) − ψk(ξk) (16)

is the predicted reduction in the approximate model, and

Aredk = J (xk) − J (xk + ξk) (17)

is the actual reduction in the objective functional.
Now we recall the trust region algorithm for solving non-linear ill-posed problems.

Algorithm 3.1 (Trust region algorithm for non-linear ill-posed problems)

STEP 1 Choose parameters 0 < τ 3 < τ 4 < 1 < τ 1, 0 ≤ τ 0 ≤ τ 2 < 1, τ 2 > 0 and initial values x0, 	0 > 0; Set k := 1.
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Figure 5. Variations of the Lagrangian parameters λ.
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STEP 2 If the stopping rule is satisfied then STOP; Else, solve (11)–(12) to give ξ k .
STEP 3 Compute rk ;

xk+1 =
{

xk if rk ≤ τ0,

xk + ξk otherwise.
(18)

Choose 	k+1 that satisfies

	k+1 ∈
{

[τ3‖ξk‖, τ4	k] if rk < τ2,

[	k, τ1	k] otherwise.
(19)

STEP 4 Evaluate gradk(J ) and Hessk(J ); k := k + 1; GOTO STEP 2.

In Step 2, the stopping rule is based on the discrepancy principle, that is, the iteration should be terminated at the first occurrence of
the index k such that the energy of the residual of the observation to model is less than the pre-assigned tolerance. Global convergence and
regularity properties of the trust region method for ill-posed inverse problems are discussed in Wang & Yuan (2005).
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The constants τ i (i = 0, . . . , 4) can be chosen by users. Typical values are τ 0 = 0, τ 1 = 2, τ 2 = τ 3 = 0.2 and τ 4 = 0.5. The parameter
τ 0 is usually zero or a small positive constant. The advantage of using zero τ 0 is that a trial step is accepted whenever the objective function
is reduced. When the objective function is not easy to compute, it seems that we should not throw away any ‘good’ point that reduces the
objective function (Yuan 1993; Wang 2007).

3.2.2 Solving the CS model in the form of a trust region subproblem

Let us go back to the lp–lq minimization model with p = 2 and q = 1. In this case, the model reads as

f (m) = ‖Lm − d‖2
l2

+ α‖m‖l1 −→ min . (20)

The regularization parameter α is set a priori value. It is evident that the above function f is non-differentiable at m = 0. To make it easy to be
calculated by computer, we approximate ‖m‖l1 by

∑l
i=1

√
(mi , mi ) + ε (ε > 0) and l is the length of the vector m. For notational simplicity,
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we let

A = LT L , γ (mk) =
⎛
⎝ mk

1√(
mk

1

)T
mk

1 + ε

, · · · , mk
i√(

mk
i

)T
mk

i + ε

, · · · , mk
n√(

mk
n

)T
mk

n + ε

⎞
⎠

T

and

χp(mk) = diag

⎛
⎜⎝ ε((

mk
1

)T
mk

1 + ε
)p/2

, · · · , ε((
mk

i

)T
mk

i + ε
)p/2

, · · · , ε((
mk

n

)T
mk

n + ε
)p/2

⎞
⎟⎠ ,

where diag(·) denotes a diagonal matrix with only non-zero components on the main diagonal line. Straightforward calculation shows the
gradient of f at mk

gk := g(mk) ≈ LT (Lmk − d) + αγ (mk)
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and the Hessian of f at mk

Hk := H (mk) ≈ LT L + αχ3(mk).

With above preparation, a new trust region subproblem for the compressing model can be formulated from (11) and (12) as

min
ξ∈X

φk(ξ ) := (gk, ξ ) + 1

2
(Hkξ, ξ ), (21)

subject to ‖ξ‖l1 ≤ 	k . (22)

To solve the trust region subproblem (21) and (22), we introduce the Lagrangian multiplier λ and solve an unconstrained minimization
problem

L(λ, ξ ) = φk(ξ ) + λ(	k − ‖ξ‖l1 ) −→ min . (23)

Straightforward calculation yields that the solution satisfies

ξ = ξ (λ) = −(Hk + λε−1χ1(ξ ))−1gk . (24)
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Figure 13. Variations of the Lagrangian parameters λ.

Figure 14. Velocity model.
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From (24), we find that the trial step ξ can be obtained iteratively

ξ j+1(λ) = −(Hk + λε−1χ1(ξ j ))−1gk . (25)

And at the kth step, the Lagrangian parameter λ can be solved via the non-linear equation

‖ξk(λ)‖l1 = 	k . (26)

Denoting �(λ) = 1
‖ξk (λ)‖l1

− 1
	k

, the Lagrangian parameter λ can be iteratively solved by Newton’s method

λl+1 = λl − �(λl )

�′(λl )
, l = 0, 1, · · · . (27)

The derivative of �(λ) can be evaluated as d
dλ

(
1

ρ(λ)

)
= − ρ′(λ)

ρ2(λ)
= − ρ′(λ)

‖ξk (λ)‖2
l1

, where ρ(λ) := ‖ξk(λ)‖l1 . One may readily derive that at the kth
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step

ρ ′(λ) ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ k
1 (λ)√

ξ k
1 (λ)T ξ k

1 (λ) + ε

...

ξ k
i (λ)√

ξ k
i (λ)T ξ k

i (λ) + ε

...

ξ k
n (λ)√

ξ k
n (λ)T ξ k

n (λ) + ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

∗ d

dλ
ξk(λ) = γ (ξk)T [εHk + λχ1(ξk)]−1χ1(ξk)ξk(λ). (28)
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Hence, the optimal Lagrangian parameter λ∗ can be obtained from iteration formula (27). Once λ∗ is reached, the optimal step ξ ∗ is obtained
and the trust region scheme in Algorithm 3.1 can be driven to another round of iteration.
Remark. Interesting properties can be obtained for the trust region method:

(1) The Lagrangian parameter {λk} is uniformly bounded. This assertion can be obtained by noting the fact that 	k ≥ ω‖gk‖ (ω > 0),
hence {λk} is uniformly bounded. This property indicates that the Lagrangian parameter λ also plays a role of regularization.

(2) Unlike the smooth regularization, where ‖ξk(λ)‖l2 solved by the corresponding trust region method is monotonically decreasing and
‖ξk(λ)‖l2 is a decreasing function of λ (Wang & Yuan 2005; Wang 2007); for the sparse regularization model, the ‖ξk(λ)‖l1 solved by the
above trust region method is not necessarily decreasing, but ‖ξk(λ)‖l1 can be bounded so long as noting the expression (24).
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(3) The trust region subproblem (21)–(22) can be also solved by some gradient-type methods. This may relax the computational cost of
factorization of matrices.

4 S A M P L I N G

4.1 Random sampling

Regular incomplete sampling takes a number of observations in a measurement line with equidistance. This kind of sampling may not satisfy
the Shannon/Nyquist sampling theorem. As the coherence noise in frequency–wavenumber domain occurs in this type of sampling, hence it is
not suitable for orthogonal transform-based wavefield reconstruction. Random incomplete sampling refers to taking a number of independent
observations in a measurement line with randomly allocated geophones. This sampling technique is better than the regular incomplete
sampling, however a large sampling interval is not suitable for wavefield reconstruction, for example, reconstruction using short-time Fourier
transform and curvelet transform. This lack of control over the size of the gaps during random sampling may lead to an occasional failed
recovery. Fig. 1 illustrates the problem of the uncontrolled random sampling. Another sampling technique is the jittered undersampling
(Hennenfent & Herrmann 2008). The basic idea of jittered undersampling is to regularly decimate the interpolation grid and subsequently
perturb the coarse-grid sample points on the fine grid. However, the jittered undersampling takes only integer partition of the complete
sampling, which may not satisfy the practical wavefield reconstruction.

4.2 A new sampling technique: piecewise random subsampling

Usually in field applications, because of the influence of ground geometry such as valleys and rivers, the sampling is difficult to allocate
properly. Therefore, the above sampling techniques would not be able to overcome such kind of difficulties completely. Considering their
shortcomings, we propose a new sampling scheme: a piecewise random subsampling (Fig. 2). We first partition the measurement line into
several subintervals; then perform random sampling on each subinterval. As the number of partitions is sufficient enough, the sampling
scheme will control the size of the sampling gaps while keeping the randomicity of the sampling.

5 N U M E R I C A L R E S U LT S

To verify the feasibility of our algorithm, we consider two numerical examples. We start our simulation from a simple 1-D sparse signal
reconstruction. Then, we consider an example of reconstruction of seismic shot gathers.

5.1 Random signal reconstruction

We consider a sparse signal m ∈ R
N , which is measured (sensed) by a random measuring matrix L ∈ R

M×N (M < N). Then, d = Lm ∈ R
M

is the measurement vector. Every row of the matrix L can be seen as a measuring operator, whose inner product with m is a measurement.
M < N means the number of measurements is smaller than the length of the signal, thus the number of measurements is compressed. In

0 2 4 6 8 10 12 14
10

10

10

10

10

10

10
0

Iterations

λ

Figure 21. Variations of the Lagrangian parameters λ.
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our simulation, M is chosen as 140 and N equals 200. Our problem is to recover the original signal m from the measurement d. This is a
severely ill-posed problem. Since the measurement is random, therefore, the data are randomly recorded. To show the randomness, we plot
the measurement data in Fig. 3. The original sparse signal is shown in Fig. 4 with legend ‘o’ lines. Using our trust region algorithm and the
piecewise random subsampling, the restoration results (‘+’ lines) comparing with the original signal is shown in Fig. 4. It is evident from
the comparison that our algorithm is robust in reconstruction of sparse signals. This example shows that our method works for any random
generated data (e.g. in Fig. 3) using random measurement matrix. Therefore, it would be a reliable and stable method for potential practical
problems.

We have shown in Section 3.2.2 that the Lagrangian parameter λ is uniformly bounded. In fact, we noted from numerical tests that this
parameter is also in a decreasing tendency with process of iterations (Fig. 5). Hence, the Lagrangian parameter λ plays a role of regularization.

5.2 Reconstruction of shot gathers

Now we consider a seven layers geological velocity model (Fig. 6). With the spatial sampling interval of 15 m and the time sampling interval
of 0.002 s, the shot gathers are shown in Fig. 7. The data with missing traces are shown in Fig. 8. Using our trust region approach and the
piecewise random subsampling, the recovered wavefield is shown in Fig. 10. It is clear from the reconstruction that most of the details of
the wavefield are preserved. To show the good performance of our method, we plot the frequency information of the subsampled data and
the restored data in Figs 9 and 11, respectively. It is clear that the aliasing (just like noise) of the subsampled data is reduced greatly in the
recovered data. The difference of the original data and the recovered data is illustrated in Fig. 12. Virtually, all the initial seismic energy is
recovered with minor errors. Though there are still the artefacts such as vertical stripes, we consider it might be caused by ill-posed nature of
the inversion process and insufficient iterations. We also plot the variations of the Lagrangian parameter at each iteration in Fig. 13. Again,
we find that this parameter is in a decreasing tendency with process of iterations.

5.3 Reconstruction of inhomogeneous media

Next we consider a more complicated inhomogeneous media. The data are generated using a velocity model varying both vertically and
transversely (Fig. 14). The original data, subsampled data and recovered data are shown in Figs 15, 16 and 18, respectively. The frequency
information of the subsampled data and the recovered data are shown in Figs 17 and 19, respectively. Again, the aliasing of the subsampled
data is reduced greatly in the recovered data. The difference of the original data and the recovered data is illustrated in Fig. 20. It illustrates
that all the initial seismic energy is recovered with minor errors. Though the reconstruction is not perfect, most of the details of the wavefield
are preserved. Decreasing tendency of the Lagrangian parameter at each iteration is shown in Fig. 21.

6 C O N C LU S I O N

In this paper, we consider using trust region methods for solving the CS problem in seismic imaging. Due to limitations of local convergence of
gradient descent methods in literature, we consider a global convergent method in this paper. Particularly, we propose an l1-norm constrained
trust region method for solving the CS problem. In solving the trust region subproblem, an exact solution method with the determination of
the Lagrangian parameter by Newton’s method is developed. In numerical tests, a piecewise random subsampling technique for wavefield
reconstruction is also developed.

We argue that the trust region subproblem can be also solved in an inexact way, for example, using gradient type of methods. This
deserves further investigation. In addition, to tackle the ill-posedness of the reconstruction problem, proper regularization is necessary, for
example, choosing a proper regularization parameter α. In this paper, we use the a priori approach. Clearly, this kind of choice is not optimal.
It is desirable to find a better regularization parameter α by a posteriori techniques.
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