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Reducing two-way splitting error of FFD method in dual domains

Jin-Hai Zhang' and Zhen-Xing Yao'

ABSTRACT

The Fourier finite-difference (FFD) method is very popu-
lar in seismic depth migration. But its straightforward 3D
extension creates two-way splitting error due to ignoring the
cross terms of spatial partial derivatives. Traditional correc-
tion schemes, either in the spatial domain by the implicit fi-
nite-difference method or in the wavenumber domain by
phase compensation, lead to substantially increased compu-
tational costs or numerical difficulties for strong velocity
contrasts. We propose compensating the two-way splitting
error in dual domains, alternately in the spatial and wave-
number domains via Fourier transform. First, we organize
the expanded square-root operator in terms of two-way split-
ting FFD plus the usually ignored cross terms. Second, we
select a group of optimized coefficients to maximize the ac-
curacy of propagation in both inline and crossline directions

without yet considering the diagonal directions. Finally, we
further optimize the constant coefficient of the compensation
part to further improve the overall accuracy of the operator.
In implementation, the compensation terms are similar to
the high-order corrections of the generalized-screen method,
but their functions are to compensate the two-way splitting
error rather than the expansion error. Numerical experiments
show that optimized one-term compensation can achieve
nearly perfect circular impulse responses and the propaga-
tion angle with less than 1% error for all azimuths is
improved up to 60° from 35°. Compared with traditional
single-domain methods, our scheme can handle lateral ve-
locity variations (even for strong velocity contrasts) much
more easily with only one additional Fourier transform
based on the two-way splitting FFD method, which helps
retain the computational efficiency.

INTRODUCTION

One-way wave-equation depth migration is an important tool
when imaging complex media (Claerbout, 1985; Etgen et al.,
2009). Many methods have been developed during the last three
decades, such as the finite-difference method (Claerbout, 1985),
the Fourier method (Gazdag, 1978), and the dual-domain
method (e.g., Stoffa et al.,, 1990; Ristow and Riihl, 1994; Wu,
1994; Jin et al., 1999; de Hoop et al., 2000; Le Rousseau and
de Hoop, 2001; Xie and Wu, 2001; Wu, 2003). As a dual-do-
main method, the Fourier finite-difference (FFD) method
(Ristow and Riihl, 1994) combines the advantages of the Fourier
method and the finite-difference method by cascading an
implicit finite-difference correction to the split-step Fourier
method (see Zhang et al. (2009b) for a detailed comparison
between the FFD method and the Fourier method). The FFD
method is very popular in imaging complex structures because
it can handle strong lateral velocity variations and steep dips.

Unfortunately, the FFD method’s direct 3D extension is
extremely costly because 3D implicit finite-difference correction
involves solving large sparse matrices (Claerbout, 1985; Li,
1991). A practical approach is to sequentially split the 3D
implicit finite-difference correction into two cascaded 2D opera-
tors along the inline and crossline directions, which is called a
two-way splitting technique (Brown, 1983) or an alternating-
direction-implicit scheme (Peaceman and Rachford, 1955;
Wachspress and Habetler, 1960; Douglas, 1962). Although the
two-way splitting technique affords high computational effi-
ciency, it introduces large phase errors (called two-way splitting
error or azimuthal anisotropy) for wide-angle propagations at
45° and 135° azimuths. This azimuthal anisotropy causes the
depth slice of impulse response in 3D homogeneous media
(with reference velocity smaller than real velocity) to not show
a perfect circle but a “smoothed diamond”; that is, the wave
propagation speed in diagonal directions appears to be slower
than that in inline and crossline directions. In addition, this error
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becomes more apparent with increasing dip angles and increas-
ing velocity contrast (Zhang et al., 2008). Consequently, the
two-way splitting FFD method has low accuracy in diagonal
directions, especially for steep dips in 3D strongly heterogene-
ous media. The two-way splitting error may lead to incorrect
positioning or lack of images when imaging steep structures,
especially in the presence of strong velocity contrasts (Claerbout,
1985; Wang, 2001).

Several approaches have been proposed to deal with the two-
way spitting error. One way is to avoid the two-way spitting
error by directly solving the banded linear systems arising from
the 3D downward continuation equations. Rickett et al. (1998)
propose the helical boundary conditions, which invert the 2D
convolution matrix with an equivalent 1D filter operation.
Fei and Etgen (2002) propose the domain decomposition method,
which solves the 2D convolution matrix in multiple subdomains.
Another way, which is very popular in practice, is to apply the
two-way splitting technique first and then append correction terms
to compensate the two-way splitting error. There are several dif-
ferent kinds of implementations, as we outline below.

Graves and Clayton (1990) derive a phase-correction filter in
the spatial domain by solving a cascade of tridiagonal matrix
systems. This method works but its computational cost doubles
compared to the cost of the two-way splitting finite-difference
method. Li (1991) proposes an error-compensation equation
using the phase-shift method for laterally homogeneous media.
Phase shift plus interpolation (Gazdag and Sguazzero, 1984) can
be used to handle heterogeneous media with potentially substan-
tial increase in computational cost. Collino and Joly (1995) and
Ristow and Riihl (1997) apply four-way splitting to obtain a cir-
cular response; that is, two additional extrapolations along diag-
onal directions are cascaded after the two-way splitting.
Although a nearly perfect response could be obtained, the com-
putational cost is doubled. In addition, the finite-difference
solver in the diagonal directions encounters more serious numeri-
cal dispersion because the spatial interval is increased by a factor
of /2 and additional computations are required for wavefield
interpolations in the presence of dx##dy (Ristow and Riihl,
1997). Biondi (2002) suggests performing FFD plus interpolation
to reduce azimuthal anisotropy. The computational cost is at least
doubled. Wang (2001) proposes a wavenumber-domain interpola-
tion scheme to pick up the ignored cross terms of inline and
crossline wavenumbers. Zhang et al. (2008) introduce Wang’s
scheme (2001) to the FFD operator and reduce the computational
cost by optimizing the algorithm structure. However, as a purely
wavenumber-domain method, Wang’s scheme has difficulty
selecting a proper velocity to account for strong lateral heteroge-
neous media. Therefore, a new method with high accuracy and
computational efficiency is still in demand to reduce the two-way
splitting error of the FFD method.

Dual-domain methods handle spatial and wavenumber varia-
bles in spatial and wavenumber domains alternatively, where
wavefields are shuttled between space and wavenumber domains
using Fourier transforms. This method is widely used in con-
structing new migration methods (e.g. Stoffa et al., 1990;
Ristow and Riihl, 1994; Wu, 1994; Jin et al., 1999; de Hoop et
al., 2000; Le Rousseau and de Hoop, 2001; Wu, 2003; Liu and
Zhang, 2006; Zhang and Liu, 2007; Zhang et al., 2010). In this
paper, we apply the dual-domain method to compensate the
two-way splitting error of the FFD method. First, we organize

the expanded square-root operator in terms of two-way splitting
FFD plus usually ignored cross terms of inline and crossline
wavenumbers. Second, we rearrange cross terms using variable
separation. Then, we implement the compensation using dual-
domain method by Fourier transforms. Finally, we optimize the
constant coefficients to reduce the number of terms added. Only
one additional Fourier transform is required in our scheme com-
pared to the traditional two-way splitting FFD method. Numeri-
cal results show perfect circles in the depth slice of 3D impulse
response. The accurate dip angle using a relative error cutoff of
1% is not smaller than 60° for all azimuths, including diagonal,
inline, and crossline directions.

It is easy to extend our dual-domain compensation scheme
from the traditional two-way splitting FFD method because the
FFD method is a dual-domain method already. The added terms
are implemented in a similar manner to the high-order terms of
the generalized-screen method (de Hoop et al., 2000), but their
function is to reduce the two-way splitting error of the FFD
method rather than to reduce the expansion error of the square-
root operator. In implementation, our scheme can be regarded as
a natural combination of the two-way splitting FFD method and
the high-order generalized-screen method. It handles lateral ve-
locity variations by separation of variables in dual domains as
does the generalized-screen method (de Hoop et al., 2000).
Compared with purely wavenumber-domain methods (such as
Li’s compensation [1991] and Wang’s scheme [2001]), our
scheme can handle lateral velocity variations (even for strong
velocity contrasts) much more easily with only one additional
compensation term. Compared with the finite-difference correc-
tion in the spatial domain, such as the four-way splitting, our
scheme can handle nonsquare grids easily and has less numeri-
cal dispersion for coarse grids.

METHODOLOGY
Two-way splitting FFD method

The downward extrapolation wave equation for 3D one-way
depth migration in the frequency domain reads (Claerbout, 1985)

OP(x,y,z;0) _ .
T = ik (x5 0), )
Z
with the square-root  operator  defined as K.

= \/wz/v2 + 0 /x? + 0% /Y2, where v = v(x,y,z) is the veloc-

ity, i = v/—1 is the imaginary unit, w is the circular frequency,
and P(x,y,z;®) is the pressure in the frequency domain. The
formal solution of equation 1 is

z+Az
P(x,y,z 4+ Az; ) = exp (lJ

Kl(xvyvz; a))dz)P(x,y,z; U))
%exp(l’KZAZ)P('xvy7Z;w)a (2)

where Az is the thickness of the horizontal thin slab, or, depth
interval.

According to relations ° /ax? < —k2 and 9” /0y* < —k2, the
square-root operator can be translated into a vertical wavenum-
ber (also called a dispersion relationship) as follows:

2
k=\Z-R -k, 3)
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where k, and k, are horizontal wavenumbers along inline and
crossline directions, respectively. The vertical wavenumber
k, = \/w*/v? — kI —kZ for real velocity v(x,y,z) can be
expanded by Taylor expansion as
o'} 2 n
_w Vo2 g2
k. —;;an b (kx—kky)] : @

where a, are binomial coefficients with the first five being
ap = 1, a) = —1/2, ay; = —1/8, az = —1/16, and ay = —5/128

Similarly, the vertical wavenumber k0 =, /w?/v3 — k2 — k? for

the reference velocity vy = vo(z) can be expanded as

[ee] 2 n
w vV
=230 (B+)] . )
i Yo n=0 @ !
Substituting equations 4 and 5 into identical equation k. = k?
+ (k_, — ko) and using a continued-fraction expansion (Claerbout,
1985), we obtain the 3D FFD operator (Ristow and Riihl, 1994;
Biondi, 2002)
2 2
o o\ BE+E)
k_,zk?Jr(———)—#, ©)
1o (kf, + kg)

v Vo
where o = 0.25(v* + vy 4+ V) /w* and B =0.5(v—vy)/w. In
fact, we can obtain equation 6 in another way by two steps —
deriving a 2D FFD operator first and then extending it to a 3D
case by simply replacing k2 with &> + k)z,.
The formal solution of one-way wave equation can be decom-
posed for laterally varying media into three cascaded equations:

P'(x,y,z4 Az;w) = F {exp(ik}Az) F*[P(x,y,z; )]},

@)
P"(x,y,z + Az;w) = exp {i (% - ?) Az} P'(x,y,z+ Az; ),
0
(8)
and
* &
OP" (x,y,z4+ Az; @) i (@—’_a_yz) "
= :1 P P'(x,y,z+ Az; ),
+ o a_)62+a_)12
9)

where F* and F~ denote 2D forward and inverse Fourier trans-
forms along horizontal space, respectively. Equation 7 performs
the phase shift for the reference velocity in the wavenumber do-
main (Gazdag, 1978), equation 8 performs the time-delay cor-
rection for slowness perturbations in the spatial domain (Stoffa
et al., 1990), and equation 9 handles the high-order corrections
for large velocity contrasts and wide-angle propagations using
the implicit finite-difference method (Ristow and Riihl, 1994).

The direct implementation of the 3D implicit finite-difference
scheme in the third term (i.e., equation 9) requires solving large
sparse-matrix equations, which is extremely expensive. A practi-
cal way is to further split it into two independent 2D operators
by ignoring the cross terms of k> and kf, as follows:

pE+E) e
L—a(k+az) 1ookd1-ak

This approach is called the two-way splitting technique (Brown,
1983) or the alternating-direction-implicit (ADI) scheme (Douglas,
1962). Thus, the two-way splitting FFD operator is approximated as

P v v 1 —ok? 1 — ok}
The last two terms in equation 11 can be efficiently solved as

two cascaded tridiagonal systems. In implementation, equation 9
is further split into two cascaded equations as follows:

(10)

62
1" . iﬁ—
opP (x’yé;_ Az ©) = 6x22 P'(x,y,z+Az;0) (12)
1 _
T o2
and
62
" . iﬁ_z
opP (x,y,aZZJr Az; ) _ ayaz P'”(x,y,z + Az; o).
14 OCa—yz

(13)
Taking the wavefields P(x,y,z;w) as initial conditions at the
depth level z, we can extrapolate them to the depth level z + Az
by sequentially solving equations 7, 8, 12, and 13. Taking the
output wavefields P (x,y,z + Az; w) as initial conditions at the
depth level z + Az, we can obtain wavefields at the depth level
7+ 2Az. Repeating this procedure from the upper surface down-
ward to the bottom of a 3D model, we could obtain wavefields
at all depth levels.

The two-way splitting technique causes significant error for
wide-angle propagations along the oblique directions and is
harmful for imaging steep dips. In the following two sections,
we present a new method to reduce the two-way splitting error
with high accuracy and computational efficiency.

Compensation in dual domains

Substituting both equations 4 and 5 into the equation
k. =k + (k. — k) and rearranging the coefficients of k? and
kf,, we obtain

k, =k + i and, k" + i and, k"
n=0 n=0

00 n—1
+ Z nayd, Z ol (14)
n=2 i=1

where d, = vz"*'/wz”*] — vﬁ”*'/wz"*'. It is well known that
the 2D FFD operator has very high accuracy. Thus, we truncate
to n =2 and apply continued-fraction expansion to k2" and kﬁ",
respectively:

k. ~
4

v _l—ockf,_l—ockg

00 n—1
+ ) napd, Y KK (15)
n=2 i=1
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The first four terms constitute the traditional two-way splitting
FFD operator (i.e., equation 11) and the last term is the usually
ignored cross term. It is obvious that the cross terms emerge
from n = 2.

The first-order compensation reads

1/ vg 2.2
c1 = —Z (E — 3 kxky (16)
and the second-order compensation reads
3/v v 214 | 1472
o=-= <$ — (kxky + kxky). 17

It is difficult for the finite-difference method to handle terms
containing products of k> and k}z,. Consequently, we handle these
terms using a Fourier scheme to compensate two-way splitting
errors. In implementation, equations 16 and 17 correspond to
the following equations, respectively:

P.(x,y,z+ Az; 0) = exp(ic;Az)P" (x,y,z + Az; ) (18)
and
Pl(x,y,z+ Az; w) = exp(ic2Az)PL(x,y,z + Az; ), (19)

where P”(x,y,z + Az; w) are the output wavefields of the tradi-
tional two-way splitting FFD method (see equation 13) and
P! (x,y,z4+ Az;w) and P!(x,y,z+ Az;w) are the output wave-
fields of the first- and second-order corrections, respectively.
Unfortunately, the spatial variables are not explicitly separated
from the wavenumber variables because they are coupled as an
exponent of a complex exponential function (see equation 18 or
19). Another Taylor expansion, ¢ ~ 1 + ix, is required for the
exponential function to completely separate the spatial and
wavenumber variables (de Hoop et al., 2000); that is, compensa-
tion equations 18 and 19 should be further approximated,
respectively, as

PL(x,y,z+ Az;w) ~ (1 +iciAz)P" (x,y,z + Az; ) (20)
and
Pl(x,y,z+ Az; ) = (1 + ic2Az)P.(x,y,z + Az; ). (21)

The two-way splitting FFD method accurately handles wave
propagation except at wide propagation angles in the presence
of strong lateral velocity contrasts. Thus, the high-order terms
(i.e., equations 20 and 21) only handle wide-angle corrections
(usually beyond 45°) primarily in diagonal directions. We
assume the exponents ic;Az and ic;Az are small enough to guar-
antee the suitability of Taylor expansion used in equations 20
and 21. However, a direct implementation of equations 20 and
21 will encounter stability problems. De Hoop et al. (2000) sug-
gest a normalization operator A to stabilize the wavefield
extrapolation and to reduce the phase error caused by the Taylor

expansion, which reads
71 p
(1+72),
1+1iq

(22)

where p and ¢ denote the real part and imaginary part of a com-
plex number, respectively.

N(1 + p+iq) = exp(iq)‘l +1f—iq

The spatial variables associated with v are handled in the spa-
tial domain whereas the wavenumber variables associated with
k¢k, are handled in the wavenumber domain. Fast Fourier trans-
forms are needed to shuttle wavefields between spatial and
wavenumber domains, with forward fast Fourier transform trans-
forming wavefields from the spatial domain to the wavenumber
domain and inverse fast Fourier transform transforming wave-
fields from the wavenumber domain to the spatial domain.
Therefore, detailed wavefield extrapolation procedures for com-
pensation equations 20 and 21 are

P (ke ky) = FF[P"(x,y)]
INZK2IEF T [2a,d, P (x,
xN{l oKy [2a,d,P" ( )’>]} 23)

FH[P" (x,y)]
and
P (x,y) =F " [P, (keoky)]
iAzBasdsF~ | (I2KE+KEE )P (ki)
F [P (kerky)] ’

XN 1+

(24)

where P, (ky,ky) are the wavenumber-domain wavefields after
applying the first-order correction. Refer to Zhang et al. (2009a)
for a very similar algorithm, which presents the detailed pseudo-
code of the generalized-screen method. Expressions of z + Az
and o are omitted in wavefield variables for brevity. As in the
generalized-screen method, each additional term of compensa-
tion requires an additional forward Fourier transform by revising
the sequence of extrapolations (see pseudo code in Zhang et al.,
2009a). Thus, two-term compensation requires four 2D Fourier
transforms and two implicit finite-difference solutions for wave-
field extrapolation at each depth level. Compared with the two-
way splitting FFD method, one-term compensation needs one
more Fourier transform and two-term compensation needs two
more Fourier transforms.

Global optimization by simulated annealing

Although two-term compensation works well to produce an
almost perfect circle, its computational cost is relatively high. In
addition, its accurate propagation angle, the smallest dip angle
that just begins to reach 1% phase error as a function of azi-
muth, is relatively low. We hope to minimize the increasing of
computational cost based on the two-way splitting FFD method
by using only one term; that is, only one more Fourier transform
is needed rather than two more Fourier transforms.

Optimizing constant coefficients of an operator can further
improve the accurate propagation angle under a given error
threshold while retaining the algorithm structure and the compu-
tational cost (Lee and Suh, 1985; Ristow and Riihl, 1994; Xie
and Wu, 1999; Huang and Fehler, 2000; Liu and Zhang, 2006;
Zhang and Liu, 2007; Zhu et al., 2008; Zhang et al, 2010).
There are two kinds of optimization methods: local optimization
scheme and global optimization scheme (Huang and Fehler,
2000). The local optimization scheme needs to optimize con-
stant coefficients for different velocity ranges among all depth
slices. It produces a list of optimization coefficients stored in
memory and requires a table lookup for each depth slice during
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wavefield extrapolation. In contrast, the global optimization
scheme only needs to optimize constant coefficients for the uni-
versal velocity range of the whole 3D velocity; thus, it has only
one group of optimized coefficients for a given velocity model
and is convenient for applications.

There are two kinds of error for two-way splitting FFD opera-
tors: expansion error and two-way splitting error (Zhang et al.,
2009b). The error in inline and crossline directions is purely
expansion error; the error in other directions (including diagonal
directions) consists of both. Applying a global optimization
scheme (Huang and Fehler, 2000) and a multiparameter scheme,
Zhu et al. (2008) greatly reduce the expansion error of the FFD
method. Under a relative error of 1%, the accurate propagation
angle is no lower than 75° for most velocity functions encoun-
tered in practice. Although optimizing constant coefficients can
significantly reduce the expanded error, it offers minimal help
for reducing two-way splitting error without considering the
compensation terms (Zhang et al., 2008). We hope to signifi-
cantly reduce the two-way splitting error by optimizing constant
coefficients of the dual-domain compensation. One way is to
optimize all constant coefficients of the whole FFD operator
simultaneously, but this leads to too many variables to be opti-
mized. Another way is to optimize constant coefficients of the
two-way splitting FFD method and the one-term compensation in
sequence. The latter is more attractive because of its simplicity.
In addition, it is helpful to improve the convergence of our opti-
mization procedure. In this paper, we adopt the optimized coeffi-
cients obtained by Zhu et al. (2008) to guarantee the wide-angle
precision in inline and crossline directions. Next, we will concen-
trate on optimizing the coefficients of the compensation term.

We represent transversal wavenumbers in terms of azimuth
angle ¢ and of dip angle 0 as (Claerbout, 1985; Li, 1991)

ke = %Sin Ocos¢p and k, = %sin 0sin . 25)

Then, the relative phase error can be defined as

z z|

k.

R(¢p,0,p) = x 100%, (26)
where the accurate vertical wavenumber is k, = wcos0/v, the
approximated vertical wavenumber k. of the two-way splitting
FFD method is given in equation 11, and the approximated
vertical wavenumber k. of the two-way splitting FFD plus dual-
domain compensation is given in equation 15. The velocity con-
trast is defined as (v—vg)/vx100%= (1 —p) x 100%. A small
velocity contrast denotes weak lateral velocity variations and a
large value denotes strong lateral velocity variations.

We rewrite the operator of second-order compensation as

follows:
L/
~® _ [ 0)2,2
k. ~ kz 1 <w3 w3)kxky

3 (v V<5) 2,4 4,2
—— (5 _ 5) (kxky + kxky), 27)

where the first term of equation 27 (i.e., symbol k%) denotes the
two-way splitting FFD propagator as shown in equation 11, the
second term (i.e., —1/4(v’ —g)kik; /@?) is the first-order com-
pensation term, and the third term (ie., —3/16(v> —v})
<kf,k;f +k§k§> ®’) is the second-order compensation term. If

we truncate to the first-order compensation and optimize its con-
stant coefficient, the accurate dip angle is still limited (only
about 55°). To further improve the accuracy, we apply a contin-
ued-fraction approximation (Claerbout, 1985) as follows:

1 V3 V3 3 V5 VS
~ P 0 272 0 2 2

~ k¥ (28)
) 3 v -% 24 i
42 v3 —v3 ( T )
Considering relations in equation 25, we can further simplify to
2 2
K+ k_‘z, = ?sm2 0cos” ¢ + Wsm2 0sin® ¢
>
= sin” 0(cos” ¢ + sin” )
2
w” .
= —sin’ 0- (29)
1%

As a higher-order correction after the two-way splitting FFD op-
erator, the compensation term comes into effect only if the spit-
ting error is significant. On the other hand, the compensation
term is useless when the total error of the expanded square-root
is too large. That is, the contribution of the compensation term
takes effect only for a certain range of dip angles (e.g.,
40°~70°). To simplify the compensation as a first-order com-
pensation, we set sin’( in equation 29 to be a constant f;.
Therefore, the modified first-order compensation term becomes

k.~ kP — . 30)
z 7K, 55

ST

45 \/(3)\/2

We set the two constant coefficients in equation 30 as constants
to be optimized, i.e.,

v V?) 212
e

k. =k — . (31)
Vv =)
17f2v5—v(3)vz

This approximation can further improve the accuracy after opti-
mization while keeping the computational cost constant.

Like the globally optimized scheme (Huang and Fehler,
2000), we divide the practical range of [1,1/pmin] With a uni-
form interval of 0.1, where pyi, = min[vy/v]. The constant coef-
ficients in the compensation part (i.e., equation 31) are set to be
coefficients to be optimized over [—1,1]. We employ the simu-
lated annealing algorithm (Kirkpatrick et al., 1983) to minimize
the percentage relative error of the approximated vertical wave-
number k., according to the object function (i.e., equation 26).
Over the range of p € [1/3,1], under the relative error of 1%,
the optimized coefficients of globally optimized two-way split-
ting FFD method (see Zhu et al., 2008) where o = (g1v2
+ govvo + g3v3) /@? and B = go(v — vo)/w) are go = 0.4403352,
g1 = 0.4638829, g, = 0.1855499, and g3 = 0.2343113, and the
optimized coefficients in the compensation part are f} =
0.4462594 and f, = 0.3176515.

Downloaded 10 Jun 2011 to 159.226.119.199. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



S170 Zhang and Yao

Relative error analyses

Figure 1 shows the relative error versus azimuth angle at two
given dip angles: 45° (see thin lines) and 60° (see bold lines).
For each method, the error is larger above the line than the
given relative error of 1%. Below the line, the error is smaller.
The velocity contrast (v—vg)/vx100% used in this figure is of
70%, which corresponds to a very strong lateral velocity varia-
tion. Because the azimuth anisotropy is periodic over the whole
azimuth range of [0°,360°], only the azimuth angles within
[0°,90°] are shown.

The two-way splitting FFD method has a highly unbalanced
error distribution among various azimuth angles. The highest ac-
curacy occurs in the inline and crossline directions (i.e., 0°/90°)
and the lowest accuracy occurs in diagonal directions (i.e., 45°).
For a dip angle of 45°, the maximum error in inline and cross-
line directions is under 1%, whereas the maximum error in diag-
onal directions is about 4% (see the lower dashed thin line). For
a dip angle of 60°, the maximum error in inline and crossline
directions is only about 6% whereas the maximum error in diag-
onal directions is about 17% (see the upper dashed bold line).
After using our first-order compensation, the azimuthal anisot-
ropy is greatly reduced, whereas the accuracy in the inline and
crossline directions is retained (see the dot-dashed lines). For
example, the maximum error for a dip angle of 60° is reduced
to 10% from 17%. But this error is still much larger than the
maximum error of 6% in inline and crossline directions. After
using our second-order compensation, the azimuthal anisotropy
is almost completely reduced since the error is almost equal for

18 T T T T T T T T
------ FFD2 PEELN
16 1| — —-- Err1 - N T
o' ‘Q
— — — ERR2 R4 .
14 + 4 . e
GOE1 R N
g 8

— " \‘
X 12 r K4 * 1
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o . .
= = * - . E
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Figure 1. Relative error versus azimuth angle at two given dip
angles. The velocity contrast (v—v,)/v used here is of 70%. There
are two groups of lines listed in this figure. The thin and bold lines
are corresponding to the dip angles of 45° and 60°, respectively.
The short dashed lines represent the two-way splitting Fourier fi-
nite-difference method (denoted by FFD2). The dot dashed lines
represent the method using first-order compensation after the two-
way splitting Fourier finite-difference method (denoted by ERR1).
The long dashed lines represent the method using second-order
compensation after the two-way splitting Fourier finite-difference
method (denoted by ERR2). The solid lines represent the globally
optimized first-order compensation after the two-way splitting Fou-
rier finite-difference method (denoted by GOE1). Note that the rel-
ative error of our globally optimized first-order compensation is
never bigger than 1% for dip angles of 45° and 60°.

various azimuth angles (see the long dashed lines). The maxi-
mum error for a dip angle of 60° is reduced to 6% from 17%.
The maximum error for a dip angle of 45° is reduced to 1%
from 4%. However, note that the maximum error is still 6% af-
ter using second-order compensation for a dip angle of 60°.
This means we still could not obtain an accurate image for steep
dips. In addition, the second-order compensation needs two
additional Fourier transforms; the consequent increase of com-
putational cost is fairly large.

The optimized first-order compensation requires only one
additional Fourier transform after the two-way splitting FFD
method, the same as the first-order compensation. But its maxi-
mum error is always under 1% either for a dip angle of 45° or
60° (see the solid lines in Figure 1). Although its error distribu-
tion is again unbalanced as that of the two-way splitting FFD
method, its total error is negligible for all azimuth angles. This
means our optimized first-order compensation, compared with
unoptimized first- and second-order compensations, has the
highest accuracy for imaging steep dips with the lowest increase
of computational cost.

Figure 2 shows relative phase error versus dip angle in diago-
nal direction. The three velocity contrasts (v—vo)/v used are of
70%, 50%, and 30%. For the three velocity contrasts listed, the
error curves of three methods — two-way splitting FFD method,
first-order compensation, and second-order compensation —
increase gradually with increasing dip angles and exceed 1% at
a dip angle of about 35°, 42°, and 48°, respectively. In contrast,
the error curves of optimized first-order compensation oscillate
under relative error of 1% and exceed 1% at dip angle of 60°.

w

N

Relative error (%)

Dip angle 6(°)

Figure 2. Relative error versus dip angle in diagonal direction.
The three velocity contrasts (v—vp)/v used here are of 70%, 50%,
and 30%. The short dashed lines represent the two-way splitting
Fourier finite-difference method (denoted by FFD2). The dot
dashed lines represent the method using first-order compensation
after the two-way splitting Fourier finite-difference method
(denoted by ERR1). The long dashed lines represent the method
using second-order compensation after the two-way splitting Fou-
rier finite-difference method (denoted by ERR2). The solid lines
represent the globally optimized first-order compensation after the
two-way splitting Fourier finite-difference method (denoted by
GOEl).
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In other words, all these compensation methods can improve the
accuracy over the dip range, but the optimized first-order com-
pensation has the greatest improvement.

Figure 3 shows velocity contrast versus phase angle of the
expanded square-root operator under relative error of 1%. The
two-way splitting FFD method always shows the worst accuracy
among all methods listed; the first-order compensation, second-
order compensation and optimized first-order compensation have
different improvements on it. Each curve has almost the same
trend, and furthermore, all curves are nearly horizontal for the
whole range of velocity contrasts except the range close to the
weak velocity contrast area. This means all methods have a sta-
ble level of improvements for various velocity contrasts. For
example, the accurate dip angle for a velocity contrast of 70%
is about 35°, 42°, 48°, and 60°, respectively. Obviously, our
optimized first-order compensation has the most significant
improvement among these three compensations, at about 25°.
This improvement is almost twice that of the second-order
compensation.

Optimizing the second-order compensation can also greatly
improve the accuracy with two additional Fourier transforms
required, but its accurate dip angle is only about 64°, which is
slightly higher than that of the optimized first-order compensa-
tion’s 60°. Thus, we recommend using our optimized first-order
compensation because it is a reasonable tradeoff between com-
putational cost and phase accuracy.

Only the case in a diagonal direction is shown in Figure 3. If
the accurate dip angle was found among all azimuth angles, the
error curve of our optimized first-order compensation would
show a slight fluctuation around the curve listed here. This is
mainly because the maximum error may not always be located
at diagonal directions like the other unoptimized methods (see
Figure 1). But the general trend would be quite similar to the
case in diagonal direction because the fluctuation is very limited
only within a fixed error range of 1%.

NUMERICAL EXAMPLES
Migration impulse responses

In this section, we illustrate the theoretical accuracy analyses
by impulse responses. A 3D homogeneous medium is defined
on a grid system of 512 x 512 x 256 with grid spacing of 10 m.
A single input trace is located at the center of the upper surface.
The traveltime is 500 ms with 2 ms sampling. The dominant
frequency of a Ricker wavelet is 25 Hz. The real velocity is
v=4500 m/s with the reference velocity being vo= 1500 m/s
(i.e., strong velocity contrast of (v — vo)/v ~ 70%). We use a
tapered boundary of 15 traces along each side of the depth slab.

Figure 4 shows vertical slices of four methods: the two-way
splitting FFD method, the first-order compensation, the second-
order compensation, and the optimized first-order compensation.
Each subfigure contains a left and right part, which are vertical
profiles along inline and diagonal directions, respectively. Obvi-
ously, the first- and second-order compensations have no influ-
ence on the accuracy in inline and crossline directions. Their
contributions are mainly around diagonal directions where there
are significant two-way splitting errors. The angle shown on the
right denotes the accurate dip angle in diagonal directions, which
can be read from Figure 3. Figure 4c shows that the two-way

splitting error is almost reduced completely under the dip angle
of 48° because the accurate dip angle in diagonal directions
(i.e., 47°) is close to that of those in inline and crossline direc-
tions (i.e., 48°).

Figure 4d shows that globally optimized first-order compensa-
tion can greatly reduce the two-way splitting error. The accurate
dip angle in diagonal directions is now up to 60°, which is
much higher than that of the unoptimized first-order compensa-
tion (42°). Meanwhile, we see that the accuracy in inline and
crossline directions is preserved since the accurate dip angle in
inline and crossline directions is still up to 70°.

Figure 5 shows depth slices of four methods: the two-way
splitting FFD method, first-order compensation, second-order
compensation, and optimized first-order compensation. Three
depth levels are selected corresponding to dip angles of 45°,
60°, and 75°, respectively. Each subfigure contains four equiva-
lent parts and each part corresponds to a method. Obviously,
there is almost no splitting error at the dip angle of 45° since
the wave fronts in all parts are close to theoretical positions
(indicated by a dashed circle). At the dip angle of 60°, however,
the two-way splitting error is significant for the two-way split-
ting FFD method, especially in diagonal directions where the
wave fronts deviate from theoretical positions.

After using the first- and second-order compensations, the two-
way splitting error is greatly reduced since the wave fronts
appear to be much more circular. However, the wave fronts after
the compensations are still not close to the theoretical positions.
In contrast, the optimized first-order compensation produces a
perfect circular response that is almost exactly on the theoretical
position (see upper-right corner of each subfigure in Figure 5).
Although the total error of our optimized first-order compensation
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80 ]l — — . — ERR1 -
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nr GOE1
~ 60 /{,i_
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— )
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Velocity contrast (v—v, )V (%)

Figure 3. Velocity contrast versus dip angle in diagonal direction.
The velocity contrast is defined as (v—vg)/vx100%. The dot
dashed line represents the method using first-order compensation
after the two-way splitting Fourier finite-difference method
(denoted by ERR1). The long dashed line represents the method
using second-order compensation after the two-way splitting Fou-
rier finite-difference method (denoted by ERR2). The solid line
represents the globally optimized first-order compensation after
the two-way splitting Fourier finite-difference method (denoted
by GOE1).
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Figure 4. Vertical profiles at source location using different methods. (a) The two-way splitting Fourier finite-difference method (indi-
cated by FFD2); (b) the first-order compensation after the two-way splitting Fourier finite-difference method (indicated by ERR1); (c) the
second-order compensation after the two-way splitting Fourier finite-difference method (indicated by ERR2); (d) the globally optimized
first-order compensation after the two-way splitting Fourier finite-difference method (indicated by GOE1). Each subfigure contains two
parts: the left and right parts are vertical profiles along inline and diagonal directions, respectively. The dashed semicircle denotes the
accurate position. The angle shown in the right part denotes the accurate dip angle in diagonal directions, which can be read from Figure
3. The real velocity of the homogeneous medium is v =4500 m/s, and the reference velocity for each panel is vo= 1500 m/s. The grid
interval used in migration is 10 m. The dominant frequency of the Ricker wavelet is 25 Hz.

is still fairly large at the dip angle of 75°, the situation is much second-order compensation, and optimized first-order compensa-

better than that of the unoptimized compensations. tion — require 2599.06, 3189.04, and 2623.51 CPU seconds,
Under the same hardware and software environments, the respectively. Compared with the two-way splitting FFD method,

two-way splitting FFD method requires 1908.76 CPU seconds, the increasing computational cost of the first-order compensation

whereas the three compensations — first-order compensation, is about one-third of the cost; that of optimized first-order
a) > » Inlin% (km) . ) b) ; InIin% (km) ; o) Inline (km)

Crossline (km)
Crossline (km)
Crossline (km)

-1 -1

-2 -2

Figure 5. Depth slices of 3D impulse responses at different dip angles. (a) 45° (z=1590 m); (b) 60° (z=1125 m); (c) 75° (z=582 m). Each
subfigure consists of four equivalent parts, and different parts use different methods. The left-upper quadrant shows FFD2, the left-bottom
quadrant shows ERR1, the right-bottom quadrant shows ERR2, and the right-upper quadrant shows GOE1. The dashed circle denotes the
accurate position. Parameters used here is the same as in Figure 4.
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compensation is also about one-third; and that of the second-
order compensation is up to two-thirds. The increased computa-
tional cost of first-order compensation and optimized first-order
compensation is very similar but the increased computational
cost of second-order compensation is nearly twice that of first-
order compensation.

Migration on SEG/EAGE salt

To verify the capabilities of three compensation methods on
imaging 3D complex structures, we test the zero-offset migra-
tion problem (Ober et al., 1997) of the SEG/EAGE 3D salt
model (Aminzadeh et al., 1996). The grid spacing is 40 m along
the x- and y-directions and 20 m along depth direction. Eighty
frequency components are extrapolated during migration. We
use a tapered boundary of 15 traces along each side of the depth
slab. In diagonal directions, the two-way splitting FFD method
should have the worst accuracy among all azimuths. Thus, we

a) Diagonal distance (km)
6 8
| |

Depth (km)

Depth (km) N Depth (km) =

(=%
~

Depth (km)

Figure 6. Vertical profiles along diagonal direction of 3D data
sets. (a) SEG/EAGE salt model; (b) image result obtained by
FFD2; (c) image result obtained by ERRI; (d) image result
obtained by GOE1.

extract the vertical slice along the diagonal direction at
x=y+600 m to illustrate the contributions of two-way splitting
error compensation, as shown in Figure 6.

Generally, each method can well image the small-angle struc-
tures and even steep structures above the salt dome, but each
method has a poor image for the left boundary of the salt root
as well as the dipping structures under the salt. However, there
are some significant improvements at the locations indicated by
white arrows (see Figure 6). First, the optimized first-order com-
pensation obtained a much sharper fault structure (see the posi-
tion indicated by the middle white arrow) than the structure
obtained by the two-way splitting FFD method and first-order
compensation. Second, the optimized first-order compensation
shows a much clearer image background within the salt dome
(see the position indicated by the upper white arrow). Finally,
the optimized first-order compensation shows a much more con-
tinuous subsurface under the salt dome (see the position indi-
cated by the bottom white arrow).

In addition, there are also some significant improvements
within the areas enclosed by rectangular boxes. For a detailed
comparison, we zoom in on the images within the rectangular
areas (see Figure 7). The bottom salt boundary was not well
imaged by the two-way splitting FFD method because the image
is far away from the correct position (indicated by the dashed
line). Furthermore, there are relatively strong-energy parallel
events left in the image, which are regarded as image artifacts.
The first-order compensation can pull the image of the bottom
salt boundary much closer to the correct position and reduces
the image artifacts partially. In contrast, the optimized first-order
compensation can locate the bottom salt boundary accurately
and reduce the image artifacts completely. Figure 8 shows the
depth slices at 2600 m. Similarly to the vertical slices shown in
Figure 7, the two-way splitting FFD could not image the salt
root very well, whereas the optimized first-order compensation
can image the same target much better.

Under the same hardware and software environments, the
two-way splitting FFD method runs for 383.83 CPU seconds,
while the first-order compensation and the optimized first-order
compensation run for 528.92 and 514.26 CPU seconds,

Diagonal distance (km)

o

) Diagonal distance (km) c)

Depth (km)

=
-~

Depth (km)

Figure 7. Comparison of the local details within the rectangular
areas in Figure 6. The dashed line denotes the bottom salt bound-
ary. (a) SEG/EAGE salt model; (b) image result obtained by
FFD2; (c) image result obtained by ERRI; (d) image result
obtained by GOEI.
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Figure 8. Comparison of depth slices at the salt root. (a) SEG/
EAGE salt model; (b) image result obtained by FFD2; (c) image
result obtained by ERR1; (d) image result obtained by GOE1. The
slices are at the depth of 2600 m. The dashed line in (a) indicates
the diagonal direction used in vertical profiles (Figure 6).

respectively. The increase of computational cost after using
first-order compensation is about one-third, which is consistent
with the previous numerical results.

DISCUSSIONS

During the optimization procedure, we found that the accu-
racy of the optimized operator is highly dependent on the opti-
mization strategy. If all constants (about six) are optimized at
the same time, the convergence is very slow, and it is difficult
for us to obtain an excellent optimized operator. In our scheme,
we first optimize a 2D FFD propagator and try to improve its
accurate propagation angle. Then we substitute these 2D opti-
mized coefficients into the 3D FFD operator and create a two-
way splitting operator. Finally, we derive the compensation term
and optimize its constant coefficients by optimizing the operator
as a whole, where we need to relax the 2D optimized coeffi-
cients to improve the accuracy as much as possible. We only
performed our optimization using a simulated annealing algo-
rithm. We are not sure whether we can further improve the accu-
racy of our compensation by using other optimization methods
(e.g., genetic algorithms).

The proposed compensation scheme can be applied to the fi-
nite-difference method to reduce two-way splitting error. But
the contribution would be not as significant as it is in this paper.
On the one hand, the two-way splitting error of the finite-differ-
ence method is much higher than that of the FFD method
(Zhang et al., 2008); thus, a more powerful compensation is
needed by the two-way splitting finite-difference method. On

the other hand, the compensation scheme is limited to small
two-way splitting error because there are two Taylor expansions
involved during its operator expansion. Our numerical experi-
ments suggest that the accurate dip angle obtained by optimized
second-order compensation is only a few degrees (about 3°)
higher than that obtained by the optimized first-order compensa-
tion. The contribution of the second-order compensation for the
FFD method is so slight that we could not expect more for the
finite-difference method.

The fast Fourier transform used in our code is a hybrid-radix
algorithm. If we adopt a much faster implementation of Fourier
transform (e.g., graphics card based parallel implementation, see
Zhang et al., 2009a), the runtime proportion of Fourier transform
would decrease rapidly. As a result, the increase in computational
cost caused by adding Fourier transforms would be fairly minor.
However, we could not further improve the accuracy even by
using optimized second-order compensation. Thus, efforts should
be directed to developing a more powerful method to compensate
the two-way splitting error to obtain a circle response in a much
higher wide-angle area (e.g., 70° or 80°).

Although we only show a zero-offset case, the main benefits
will occur in prestack migration because much wider angles
emerge when wavefields are propagating between sources and
receivers. In addition, our scheme is not restricted to just the
isotropic case. This method can help any medium which should
have circular depth slice impulse responses, such as VTI media.

CONCLUSIONS

Wide-angle propagation is very important when using one-
way wave equation methods to image complex structures. The
two-way splitting FFD method is widely used because of its
high computational efficiency and outstanding ability to image
dipping structures in strong lateral velocity contrasts. However,
the introduction of azimuthal anisotropy caused by two-way
splitting diminishes the benefits of using the finite-difference
scheme. This two-way splitting error will lead to large errors of
image positions or even complete failure.

In this paper, we showed how to reduce the two-way splitting
error using a dual-domain method. This method uses the basic
idea of the traditional split-step Fourier method to reduce two-
way splitting error rather than to reduce expanded error. It is a
natural combination of the two-way splitting FFD method and
the generalized-screen method. It adds a compensation term,
similar to a high-order generalized-screen correction term, to
reduce the two-way splitting error of the FFD method. Based on
the globally optimized two-way splitting FFD method, our opti-
mization scheme of the compensation part greatly improves the
accurate propagation angle. Thus, it reduces computational cost
caused by high-order corrections and requires only first-order
compensation.

The most expensive parts of solving the two-way splitting
FFD method are the two 2D Fourier transforms and an alternat-
ing-direction-implicit finite-difference scheme. After applying
our compensation scheme, one additional 2D Fourier transform
is required. Numerical experiments show that the increase of
computational cost after using our compensation is only about
one-third compared to the two-way splitting FFD method. The
constraint on the accurate dip angle of traditional two-way split-
ting FFD method emerges in the diagonal directions, which is
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only about 35° under relative error of 1%. In contrast, after
applying our compensation scheme, the accurate dip angle
among all azimuths is at least 60°.

Compared with a purely wavenumber-domain method (a single-
domain approach), our scheme is applicable to lateral velocity
variations even in the case of strong velocity contrast. Com-
pared with the spatial-domain finite-difference method, our
scheme is much faster because it is solved by fast Fourier trans-
forms. It naturally reduces to the traditional phase-shift method
when the velocity becomes homogeneous. Thus, the compensa-
tion can be omitted when splitting error is small enough (e.g.,
for weak velocity contrasts or small dip angles). Our compensa-
tion scheme has a good tradeoff between computational cost
and accurate propagation angle.
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