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ABSTRACT

The Fourier finite-difference (FFD) method is very popu-

lar in seismic depth migration. But its straightforward 3D

extension creates two-way splitting error due to ignoring the

cross terms of spatial partial derivatives. Traditional correc-

tion schemes, either in the spatial domain by the implicit fi-

nite-difference method or in the wavenumber domain by

phase compensation, lead to substantially increased compu-

tational costs or numerical difficulties for strong velocity

contrasts. We propose compensating the two-way splitting

error in dual domains, alternately in the spatial and wave-

number domains via Fourier transform. First, we organize

the expanded square-root operator in terms of two-way split-

ting FFD plus the usually ignored cross terms. Second, we

select a group of optimized coefficients to maximize the ac-

curacy of propagation in both inline and crossline directions

without yet considering the diagonal directions. Finally, we

further optimize the constant coefficient of the compensation

part to further improve the overall accuracy of the operator.

In implementation, the compensation terms are similar to

the high-order corrections of the generalized-screen method,

but their functions are to compensate the two-way splitting

error rather than the expansion error. Numerical experiments

show that optimized one-term compensation can achieve

nearly perfect circular impulse responses and the propaga-

tion angle with less than 1% error for all azimuths is

improved up to 60� from 35�. Compared with traditional

single-domain methods, our scheme can handle lateral ve-

locity variations (even for strong velocity contrasts) much

more easily with only one additional Fourier transform

based on the two-way splitting FFD method, which helps

retain the computational efficiency.

INTRODUCTION

One-way wave-equation depth migration is an important tool

when imaging complex media (Claerbout, 1985; Etgen et al.,

2009). Many methods have been developed during the last three

decades, such as the finite-difference method (Claerbout, 1985),

the Fourier method (Gazdag, 1978), and the dual-domain

method (e.g., Stoffa et al., 1990; Ristow and Rühl, 1994; Wu,

1994; Jin et al., 1999; de Hoop et al., 2000; Le Rousseau and

de Hoop, 2001; Xie and Wu, 2001; Wu, 2003). As a dual-do-

main method, the Fourier finite-difference (FFD) method

(Ristow and Rühl, 1994) combines the advantages of the Fourier

method and the finite-difference method by cascading an

implicit finite-difference correction to the split-step Fourier

method (see Zhang et al. (2009b) for a detailed comparison

between the FFD method and the Fourier method). The FFD

method is very popular in imaging complex structures because

it can handle strong lateral velocity variations and steep dips.

Unfortunately, the FFD method’s direct 3D extension is

extremely costly because 3D implicit finite-difference correction

involves solving large sparse matrices (Claerbout, 1985; Li,

1991). A practical approach is to sequentially split the 3D

implicit finite-difference correction into two cascaded 2D opera-

tors along the inline and crossline directions, which is called a

two-way splitting technique (Brown, 1983) or an alternating-

direction-implicit scheme (Peaceman and Rachford, 1955;

Wachspress and Habetler, 1960; Douglas, 1962). Although the

two-way splitting technique affords high computational effi-

ciency, it introduces large phase errors (called two-way splitting

error or azimuthal anisotropy) for wide-angle propagations at

45� and 135� azimuths. This azimuthal anisotropy causes the

depth slice of impulse response in 3D homogeneous media

(with reference velocity smaller than real velocity) to not show

a perfect circle but a “smoothed diamond”; that is, the wave

propagation speed in diagonal directions appears to be slower

than that in inline and crossline directions. In addition, this error
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becomes more apparent with increasing dip angles and increas-

ing velocity contrast (Zhang et al., 2008). Consequently, the

two-way splitting FFD method has low accuracy in diagonal

directions, especially for steep dips in 3D strongly heterogene-

ous media. The two-way splitting error may lead to incorrect

positioning or lack of images when imaging steep structures,

especially in the presence of strong velocity contrasts (Claerbout,

1985; Wang, 2001).

Several approaches have been proposed to deal with the two-

way spitting error. One way is to avoid the two-way spitting

error by directly solving the banded linear systems arising from

the 3D downward continuation equations. Rickett et al. (1998)

propose the helical boundary conditions, which invert the 2D

convolution matrix with an equivalent 1D filter operation.

Fei and Etgen (2002) propose the domain decomposition method,

which solves the 2D convolution matrix in multiple subdomains.

Another way, which is very popular in practice, is to apply the

two-way splitting technique first and then append correction terms

to compensate the two-way splitting error. There are several dif-

ferent kinds of implementations, as we outline below.

Graves and Clayton (1990) derive a phase-correction filter in

the spatial domain by solving a cascade of tridiagonal matrix

systems. This method works but its computational cost doubles

compared to the cost of the two-way splitting finite-difference

method. Li (1991) proposes an error-compensation equation

using the phase-shift method for laterally homogeneous media.

Phase shift plus interpolation (Gazdag and Sguazzero, 1984) can

be used to handle heterogeneous media with potentially substan-

tial increase in computational cost. Collino and Joly (1995) and

Ristow and Rühl (1997) apply four-way splitting to obtain a cir-

cular response; that is, two additional extrapolations along diag-

onal directions are cascaded after the two-way splitting.

Although a nearly perfect response could be obtained, the com-

putational cost is doubled. In addition, the finite-difference

solver in the diagonal directions encounters more serious numeri-

cal dispersion because the spatial interval is increased by a factor

of
ffiffiffi
2
p

and additional computations are required for wavefield

interpolations in the presence of dx=dy (Ristow and Rühl,

1997). Biondi (2002) suggests performing FFD plus interpolation

to reduce azimuthal anisotropy. The computational cost is at least

doubled. Wang (2001) proposes a wavenumber-domain interpola-

tion scheme to pick up the ignored cross terms of inline and

crossline wavenumbers. Zhang et al. (2008) introduce Wang’s

scheme (2001) to the FFD operator and reduce the computational

cost by optimizing the algorithm structure. However, as a purely

wavenumber-domain method, Wang’s scheme has difficulty

selecting a proper velocity to account for strong lateral heteroge-

neous media. Therefore, a new method with high accuracy and

computational efficiency is still in demand to reduce the two-way

splitting error of the FFD method.

Dual-domain methods handle spatial and wavenumber varia-

bles in spatial and wavenumber domains alternatively, where

wavefields are shuttled between space and wavenumber domains

using Fourier transforms. This method is widely used in con-

structing new migration methods (e.g. Stoffa et al., 1990;

Ristow and Rühl, 1994; Wu, 1994; Jin et al., 1999; de Hoop et

al., 2000; Le Rousseau and de Hoop, 2001; Wu, 2003; Liu and

Zhang, 2006; Zhang and Liu, 2007; Zhang et al., 2010). In this

paper, we apply the dual-domain method to compensate the

two-way splitting error of the FFD method. First, we organize

the expanded square-root operator in terms of two-way splitting

FFD plus usually ignored cross terms of inline and crossline

wavenumbers. Second, we rearrange cross terms using variable

separation. Then, we implement the compensation using dual-

domain method by Fourier transforms. Finally, we optimize the

constant coefficients to reduce the number of terms added. Only

one additional Fourier transform is required in our scheme com-

pared to the traditional two-way splitting FFD method. Numeri-

cal results show perfect circles in the depth slice of 3D impulse

response. The accurate dip angle using a relative error cutoff of

1% is not smaller than 60� for all azimuths, including diagonal,

inline, and crossline directions.

It is easy to extend our dual-domain compensation scheme

from the traditional two-way splitting FFD method because the

FFD method is a dual-domain method already. The added terms

are implemented in a similar manner to the high-order terms of

the generalized-screen method (de Hoop et al., 2000), but their

function is to reduce the two-way splitting error of the FFD

method rather than to reduce the expansion error of the square-

root operator. In implementation, our scheme can be regarded as

a natural combination of the two-way splitting FFD method and

the high-order generalized-screen method. It handles lateral ve-

locity variations by separation of variables in dual domains as

does the generalized-screen method (de Hoop et al., 2000).

Compared with purely wavenumber-domain methods (such as

Li’s compensation [1991] and Wang’s scheme [2001]), our

scheme can handle lateral velocity variations (even for strong

velocity contrasts) much more easily with only one additional

compensation term. Compared with the finite-difference correc-

tion in the spatial domain, such as the four-way splitting, our

scheme can handle nonsquare grids easily and has less numeri-

cal dispersion for coarse grids.

METHODOLOGY

Two-way splitting FFD method

The downward extrapolation wave equation for 3D one-way

depth migration in the frequency domain reads (Claerbout, 1985)

oPðx; y; z; xÞ
oz

¼ ijzPðx; y; z; xÞ; (1)

with the square-root operator defined as jz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=v2 þ o2

�
ox2 þ o2

�
oy2

q
, where v � vðx; y; zÞ is the veloc-

ity, i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, x is the circular frequency,

and Pðx; y; z; xÞ is the pressure in the frequency domain. The

formal solution of equation 1 is

P x; y; zþDz;xð Þ ¼ exp i

ðzþDz

z

jz x; y; z;xð Þdz

� �
P x; y; z;xð Þ

� exp ijzDzð ÞP x; y; z;xð Þ; (2)

where Dz is the thickness of the horizontal thin slab, or, depth

interval.

According to relations o2
�
ox2 , �k2

x and o2
�
oy2 , �k2

y , the

square-root operator can be translated into a vertical wavenum-

ber (also called a dispersion relationship) as follows:

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

v2
� k2

x � k2
y

r
; (3)
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where kx and ky are horizontal wavenumbers along inline and

crossline directions, respectively. The vertical wavenumber

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=v2 � k2

x � k2
y

q
for real velocity vðx; y; zÞ can be

expanded by Taylor expansion as

kz ¼
x
v

X1
n¼0

an
v2

x2
k2

x þ k2
y

� �� 	n

; (4)

where an are binomial coefficients with the first five being

a0 ¼ 1, a1 ¼ �1=2, a2 ¼ �1=8, a3 ¼ �1=16, and a4 ¼ �5=128.

Similarly, the vertical wavenumber k0
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
�

v2
0 � k2

x � k2
y

q
for

the reference velocity v0 � v0ðzÞ can be expanded as

k0
z ¼

x
v0

X1
n¼0

an
v2

0

x2
k2

x þ k2
y

� �� 	n

: (5)

Substituting equations 4 and 5 into identical equation kz ¼ k0
z

þ kz � k0
z


 �
and using a continued-fraction expansion (Claerbout,

1985), we obtain the 3D FFD operator (Ristow and Rühl, 1994;

Biondi, 2002)

kz � k0
z þ

x
v
� x

v0

� �
�

b k2
x þ k2

y

� �
1� a k2

x þ k2
y

� � ; (6)

where a ¼ 0:25 v2 þ vv0 þ v2
0


 ��
x2 and b ¼ 0:5 v� v0ð Þ=x. In

fact, we can obtain equation 6 in another way by two steps —

deriving a 2D FFD operator first and then extending it to a 3D

case by simply replacing k2
x with k2

x þ k2
y .

The formal solution of one-way wave equation can be decom-

posed for laterally varying media into three cascaded equations:

P0 x; y; zþ Dz; xð Þ ¼ F� exp ik0
z Dz


 �
Fþ P x; y; z; xð Þ½ �

� 

;

(7)

P00 x; y; zþDz;xð Þ ¼ exp i
x
v
� x

v0

� �
Dz

� 	
P0 x; y; zþDz;xð Þ;

(8)

and

oP00ðx;y; zþDz;xÞ
oz

¼
ib

o2

ox2
þ o2

oy2

� �

1þ a
o2

ox2
þ o2

oy2

� �P00ðx;y;zþDz;xÞ;

(9)

where Fþ and F� denote 2D forward and inverse Fourier trans-

forms along horizontal space, respectively. Equation 7 performs

the phase shift for the reference velocity in the wavenumber do-

main (Gazdag, 1978), equation 8 performs the time-delay cor-

rection for slowness perturbations in the spatial domain (Stoffa

et al., 1990), and equation 9 handles the high-order corrections

for large velocity contrasts and wide-angle propagations using

the implicit finite-difference method (Ristow and Rühl, 1994).

The direct implementation of the 3D implicit finite-difference

scheme in the third term (i.e., equation 9) requires solving large

sparse-matrix equations, which is extremely expensive. A practi-

cal way is to further split it into two independent 2D operators

by ignoring the cross terms of k2
x and k2

y as follows:

b k2
x þ k2

y

� �
1� a k2

x þ k2
y

� � � bk2
x

1� ak2
x

þ
bk2

y

1� ak2
y

: (10)

This approach is called the two-way splitting technique (Brown,

1983) or the alternating-direction-implicit (ADI) scheme (Douglas,

1962). Thus, the two-way splitting FFD operator is approximated as

kz � k0
z þ

x
v
� x

v0

� �
� bk2

x

1� ak2
x

�
bk2

y

1� ak2
y

: (11)

The last two terms in equation 11 can be efficiently solved as

two cascaded tridiagonal systems. In implementation, equation 9

is further split into two cascaded equations as follows:

oP00ðx; y; zþ Dz; xÞ
oz

¼
ib

o2

ox2

1þ a
o2

ox2

P00ðx; y; zþ Dz; xÞ (12)

and

oP000ðx; y; zþ Dz; xÞ
oz

¼
ib

o2

oy2

1þ a
o2

oy2

P000ðx; y; zþ Dz; xÞ:

(13)

Taking the wavefields P x; y; z; xð Þ as initial conditions at the

depth level z, we can extrapolate them to the depth level zþ Dz
by sequentially solving equations 7, 8, 12, and 13. Taking the

output wavefields P000ðx; y; zþ Dz; xÞ as initial conditions at the

depth level zþ Dz, we can obtain wavefields at the depth level

zþ 2Dz. Repeating this procedure from the upper surface down-

ward to the bottom of a 3D model, we could obtain wavefields

at all depth levels.

The two-way splitting technique causes significant error for

wide-angle propagations along the oblique directions and is

harmful for imaging steep dips. In the following two sections,

we present a new method to reduce the two-way splitting error

with high accuracy and computational efficiency.

Compensation in dual domains

Substituting both equations 4 and 5 into the equation

kz ¼ k0
z þ kz � k0

z


 �
and rearranging the coefficients of k2

x and

k2
y , we obtain

kz ¼ k0
z þ

X1
n¼0

andnk2n
x þ

X1
n¼0

andnk2n
y

þ
X1
n¼2

nandn

Xn�1

i¼1

k2i
x k2n�2i

y ; (14)

where dn ¼ v2n�1
�
x2n�1 � v2n�1

0

�
x2n�1. It is well known that

the 2D FFD operator has very high accuracy. Thus, we truncate

to n ¼ 2 and apply continued-fraction expansion to k2n
x and k2n

y ,

respectively:

kz � k0
z þ

x
v
� x

v0

� �
� bk2

x

1� ak2
x

�
bk2

y

1� ak2
y

þ
X1
n¼2

nandn

Xn�1

i¼1

k2i
x k2n�2i

y : (15)
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The first four terms constitute the traditional two-way splitting

FFD operator (i.e., equation 11) and the last term is the usually

ignored cross term. It is obvious that the cross terms emerge

from n ¼ 2.

The first-order compensation reads

c1 ¼ �
1

4

v3

x3
� v3

0

x3

� �
k2

x k2
y (16)

and the second-order compensation reads

c2 ¼ �
3

16

v5

x5
� v5

0

x5

� �
k2

x k4
y þ k4

x k2
y

� �
: (17)

It is difficult for the finite-difference method to handle terms

containing products of k2
x and k2

y . Consequently, we handle these

terms using a Fourier scheme to compensate two-way splitting

errors. In implementation, equations 16 and 17 correspond to

the following equations, respectively:

P0c x; y; zþ Dz; xð Þ ¼ exp ic1Dzð ÞP000 x; y; zþ Dz; xð Þ (18)

and

P00c x; y; zþ Dz; xð Þ ¼ exp ic2Dzð ÞP0c x; y; zþ Dz; xð Þ; (19)

where P000 x; y; zþ Dz; xð Þ are the output wavefields of the tradi-

tional two-way splitting FFD method (see equation 13) and

P0c x; y; zþ Dz; xð Þ and P00c x; y; zþ Dz; xð Þ are the output wave-

fields of the first- and second-order corrections, respectively.

Unfortunately, the spatial variables are not explicitly separated

from the wavenumber variables because they are coupled as an

exponent of a complex exponential function (see equation 18 or

19). Another Taylor expansion, eix � 1þ ix, is required for the

exponential function to completely separate the spatial and

wavenumber variables (de Hoop et al., 2000); that is, compensa-

tion equations 18 and 19 should be further approximated,

respectively, as

P0c x; y; zþ Dz; xð Þ � 1þ ic1Dzð ÞP000 x; y; zþ Dz; xð Þ (20)

and

P00c x; y; zþ Dz; xð Þ � 1þ ic2Dzð ÞP0c x; y; zþ Dz; xð Þ: (21)

The two-way splitting FFD method accurately handles wave

propagation except at wide propagation angles in the presence

of strong lateral velocity contrasts. Thus, the high-order terms

(i.e., equations 20 and 21) only handle wide-angle corrections

(usually beyond 45�) primarily in diagonal directions. We

assume the exponents ic1Dz and ic2Dz are small enough to guar-

antee the suitability of Taylor expansion used in equations 20

and 21. However, a direct implementation of equations 20 and

21 will encounter stability problems. De Hoop et al. (2000) sug-

gest a normalization operator N to stabilize the wavefield

extrapolation and to reduce the phase error caused by the Taylor

expansion, which reads

N 1 þ pþ iqð Þ ¼ exp iqð Þ 1þ p

1þ iq

����
����
�1

1þ p

1þ iq

� �
;

(22)

where p and q denote the real part and imaginary part of a com-

plex number, respectively.

The spatial variables associated with v are handled in the spa-

tial domain whereas the wavenumber variables associated with

kxky are handled in the wavenumber domain. Fast Fourier trans-

forms are needed to shuttle wavefields between spatial and

wavenumber domains, with forward fast Fourier transform trans-

forming wavefields from the spatial domain to the wavenumber

domain and inverse fast Fourier transform transforming wave-

fields from the wavenumber domain to the spatial domain.

Therefore, detailed wavefield extrapolation procedures for com-

pensation equations 20 and 21 are

�P0c kx; ky


 �
¼ Fþ P000 x; yð Þ½ �

� N 1þ
iDzk2

x k2
y Fþ 2a2d2P000 x; yð Þ½ �
Fþ P000 x; yð Þ½ �

( )
(23)

and

P00c x;yð Þ¼F� �P0c kx;ky


 �� �
�N 1þ

iDz3a3d3F� k2
x k4

yþk4
x k2

y

� �
�P0c kx;ky


 �h i
F� �P0c kx;ky


 �� �
8<
:

9=
;;

(24)

where �P0c kx; ky


 �
are the wavenumber-domain wavefields after

applying the first-order correction. Refer to Zhang et al. (2009a)

for a very similar algorithm, which presents the detailed pseudo-

code of the generalized-screen method. Expressions of zþ Dz
and x are omitted in wavefield variables for brevity. As in the

generalized-screen method, each additional term of compensa-

tion requires an additional forward Fourier transform by revising

the sequence of extrapolations (see pseudo code in Zhang et al.,

2009a). Thus, two-term compensation requires four 2D Fourier

transforms and two implicit finite-difference solutions for wave-

field extrapolation at each depth level. Compared with the two-

way splitting FFD method, one-term compensation needs one

more Fourier transform and two-term compensation needs two

more Fourier transforms.

Global optimization by simulated annealing

Although two-term compensation works well to produce an

almost perfect circle, its computational cost is relatively high. In

addition, its accurate propagation angle, the smallest dip angle

that just begins to reach 1% phase error as a function of azi-

muth, is relatively low. We hope to minimize the increasing of

computational cost based on the two-way splitting FFD method

by using only one term; that is, only one more Fourier transform

is needed rather than two more Fourier transforms.

Optimizing constant coefficients of an operator can further

improve the accurate propagation angle under a given error

threshold while retaining the algorithm structure and the compu-

tational cost (Lee and Suh, 1985; Ristow and Rühl, 1994; Xie

and Wu, 1999; Huang and Fehler, 2000; Liu and Zhang, 2006;

Zhang and Liu, 2007; Zhu et al., 2008; Zhang et al, 2010).

There are two kinds of optimization methods: local optimization

scheme and global optimization scheme (Huang and Fehler,

2000). The local optimization scheme needs to optimize con-

stant coefficients for different velocity ranges among all depth

slices. It produces a list of optimization coefficients stored in

memory and requires a table lookup for each depth slice during
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wavefield extrapolation. In contrast, the global optimization

scheme only needs to optimize constant coefficients for the uni-

versal velocity range of the whole 3D velocity; thus, it has only

one group of optimized coefficients for a given velocity model

and is convenient for applications.

There are two kinds of error for two-way splitting FFD opera-

tors: expansion error and two-way splitting error (Zhang et al.,

2009b). The error in inline and crossline directions is purely

expansion error; the error in other directions (including diagonal

directions) consists of both. Applying a global optimization

scheme (Huang and Fehler, 2000) and a multiparameter scheme,

Zhu et al. (2008) greatly reduce the expansion error of the FFD

method. Under a relative error of 1%, the accurate propagation

angle is no lower than 75� for most velocity functions encoun-

tered in practice. Although optimizing constant coefficients can

significantly reduce the expanded error, it offers minimal help

for reducing two-way splitting error without considering the

compensation terms (Zhang et al., 2008). We hope to signifi-

cantly reduce the two-way splitting error by optimizing constant

coefficients of the dual-domain compensation. One way is to

optimize all constant coefficients of the whole FFD operator

simultaneously, but this leads to too many variables to be opti-

mized. Another way is to optimize constant coefficients of the

two-way splitting FFD method and the one-term compensation in

sequence. The latter is more attractive because of its simplicity.

In addition, it is helpful to improve the convergence of our opti-

mization procedure. In this paper, we adopt the optimized coeffi-

cients obtained by Zhu et al. (2008) to guarantee the wide-angle

precision in inline and crossline directions. Next, we will concen-

trate on optimizing the coefficients of the compensation term.

We represent transversal wavenumbers in terms of azimuth

angle u and of dip angle h as (Claerbout, 1985; Li, 1991)

kx ¼
x
v

sin h cos u and ky ¼
x
v

sin h sin u: (25)

Then, the relative phase error can be defined as

R u; h; pð Þ ¼
~kz � kz

�� ��
kz

� 100%; (26)

where the accurate vertical wavenumber is kz ¼ x cos h=v, the

approximated vertical wavenumber ~kz of the two-way splitting

FFD method is given in equation 11, and the approximated

vertical wavenumber ~kz of the two-way splitting FFD plus dual-

domain compensation is given in equation 15. The velocity con-

trast is defined as (v�v0)=v�100%¼ 1� pð Þ � 100%. A small

velocity contrast denotes weak lateral velocity variations and a

large value denotes strong lateral velocity variations.

We rewrite the operator of second-order compensation as

follows:

kz � k�z �
1

4

v3

x3
� v3

0

x3

� �
k2

x k2
y

� 3

16

v5

x5
� v5

0

x5

� �
k2

x k4
y þ k4

x k2
y

� �
; (27)

where the first term of equation 27 (i.e., symbol k�z ) denotes the

two-way splitting FFD propagator as shown in equation 11, the

second term (i.e., �1=4 v3 � v3
0


 �
k2

x k2
y=x

3) is the first-order com-

pensation term, and the third term (i.e., �3=16 v5 � v5
0


 �
k2

x k4
y þ k4

x k2
y

� �.
x5) is the second-order compensation term. If

we truncate to the first-order compensation and optimize its con-

stant coefficient, the accurate dip angle is still limited (only

about 55�). To further improve the accuracy, we apply a contin-

ued-fraction approximation (Claerbout, 1985) as follows:

kz � k�z �
1

4

v3

x3
� v3

0

x3

� �
k2

x k2
y 1þ 3

4

v5

x5
� v5

0

x5

� �
k2

x þ k2
y

� �� 	

� k�z �

1

4

v3

x3
� v3

0

x3

� �
k2

x k2
y

1� 3

4x2

v5 � v5
0

v3 � v3
0

k2
x þ k2

y

� � : (28)

Considering relations in equation 25, we can further simplify to

k2
x þ k2

y ¼
x2

v2
sin2 h cos2 uþ x2

v2
sin2 h sin2 u

¼ x2

v2
sin2 h cos2 uþ sin2 u


 �
¼ x2

v2
sin2 h	 (29)

As a higher-order correction after the two-way splitting FFD op-

erator, the compensation term comes into effect only if the spit-

ting error is significant. On the other hand, the compensation

term is useless when the total error of the expanded square-root

is too large. That is, the contribution of the compensation term

takes effect only for a certain range of dip angles (e.g.,

40�
70�). To simplify the compensation as a first-order com-

pensation, we set sin2 h in equation 29 to be a constant f0.

Therefore, the modified first-order compensation term becomes

kz � k�z �

1

4

v3

x3
� v3

0

x3

� �
k2

x k2
y

1� 3

4

v5 � v5
0

v5 � v3
0v2

f0

: (30)

We set the two constant coefficients in equation 30 as constants

to be optimized, i.e.,

kz � k�z �
f1

v3

x3
� v3

0

x3

� �
k2

x k2
y

1� f2

v5 � v5
0

v5 � v3
0v2

: (31)

This approximation can further improve the accuracy after opti-

mization while keeping the computational cost constant.

Like the globally optimized scheme (Huang and Fehler,

2000), we divide the practical range of 1; 1=pmin½ � with a uni-

form interval of 0.1, where pmin ¼ min v0=v½ �. The constant coef-

ficients in the compensation part (i.e., equation 31) are set to be

coefficients to be optimized over �1; 1½ �. We employ the simu-

lated annealing algorithm (Kirkpatrick et al., 1983) to minimize

the percentage relative error of the approximated vertical wave-

number kz, according to the object function (i.e., equation 26).

Over the range of p 2 1=3; 1½ �, under the relative error of 1%,

the optimized coefficients of globally optimized two-way split-

ting FFD method (see Zhu et al., 2008) where a ¼ g1v2ð
þ g2vv0 þ g3v2

0Þ
�
x2 and b ¼ g0 v� v0ð Þ=x) are g0 ¼ 0:4403352,

g1 ¼ 0:4638829, g2 ¼ 0:1855499, and g3 ¼ 0:2343113, and the

optimized coefficients in the compensation part are f1 ¼
0:4462594 and f2 ¼ 0:3176515.
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Relative error analyses

Figure 1 shows the relative error versus azimuth angle at two

given dip angles: 45� (see thin lines) and 60� (see bold lines).

For each method, the error is larger above the line than the

given relative error of 1%. Below the line, the error is smaller.

The velocity contrast (v–v0)=v�100% used in this figure is of

70%, which corresponds to a very strong lateral velocity varia-

tion. Because the azimuth anisotropy is periodic over the whole

azimuth range of 0�; 360�½ �, only the azimuth angles within

0�; 90�½ � are shown.

The two-way splitting FFD method has a highly unbalanced

error distribution among various azimuth angles. The highest ac-

curacy occurs in the inline and crossline directions (i.e., 0�=90�)
and the lowest accuracy occurs in diagonal directions (i.e., 45�).
For a dip angle of 45�, the maximum error in inline and cross-

line directions is under 1%, whereas the maximum error in diag-

onal directions is about 4% (see the lower dashed thin line). For

a dip angle of 60�, the maximum error in inline and crossline

directions is only about 6% whereas the maximum error in diag-

onal directions is about 17% (see the upper dashed bold line).

After using our first-order compensation, the azimuthal anisot-

ropy is greatly reduced, whereas the accuracy in the inline and

crossline directions is retained (see the dot-dashed lines). For

example, the maximum error for a dip angle of 60� is reduced

to 10% from 17%. But this error is still much larger than the

maximum error of 6% in inline and crossline directions. After

using our second-order compensation, the azimuthal anisotropy

is almost completely reduced since the error is almost equal for

various azimuth angles (see the long dashed lines). The maxi-

mum error for a dip angle of 60� is reduced to 6% from 17%.

The maximum error for a dip angle of 45� is reduced to 1%

from 4%. However, note that the maximum error is still 6% af-

ter using second-order compensation for a dip angle of 60�.
This means we still could not obtain an accurate image for steep

dips. In addition, the second-order compensation needs two

additional Fourier transforms; the consequent increase of com-

putational cost is fairly large.

The optimized first-order compensation requires only one

additional Fourier transform after the two-way splitting FFD

method, the same as the first-order compensation. But its maxi-

mum error is always under 1% either for a dip angle of 45� or

60� (see the solid lines in Figure 1). Although its error distribu-

tion is again unbalanced as that of the two-way splitting FFD

method, its total error is negligible for all azimuth angles. This

means our optimized first-order compensation, compared with

unoptimized first- and second-order compensations, has the

highest accuracy for imaging steep dips with the lowest increase

of computational cost.

Figure 2 shows relative phase error versus dip angle in diago-

nal direction. The three velocity contrasts (v–v0)=v used are of

70%, 50%, and 30%. For the three velocity contrasts listed, the

error curves of three methods — two-way splitting FFD method,

first-order compensation, and second-order compensation —

increase gradually with increasing dip angles and exceed 1% at

a dip angle of about 35�, 42�, and 48�, respectively. In contrast,

the error curves of optimized first-order compensation oscillate

under relative error of 1% and exceed 1% at dip angle of 60�.

Figure 1. Relative error versus azimuth angle at two given dip
angles. The velocity contrast (v–v0)=v used here is of 70%. There
are two groups of lines listed in this figure. The thin and bold lines
are corresponding to the dip angles of 45� and 60�, respectively.
The short dashed lines represent the two-way splitting Fourier fi-
nite-difference method (denoted by FFD2). The dot dashed lines
represent the method using first-order compensation after the two-
way splitting Fourier finite-difference method (denoted by ERR1).
The long dashed lines represent the method using second-order
compensation after the two-way splitting Fourier finite-difference
method (denoted by ERR2). The solid lines represent the globally
optimized first-order compensation after the two-way splitting Fou-
rier finite-difference method (denoted by GOE1). Note that the rel-
ative error of our globally optimized first-order compensation is
never bigger than 1% for dip angles of 45� and 60�.

Figure 2. Relative error versus dip angle in diagonal direction.
The three velocity contrasts (v–v0)=v used here are of 70%, 50%,
and 30%. The short dashed lines represent the two-way splitting
Fourier finite-difference method (denoted by FFD2). The dot
dashed lines represent the method using first-order compensation
after the two-way splitting Fourier finite-difference method
(denoted by ERR1). The long dashed lines represent the method
using second-order compensation after the two-way splitting Fou-
rier finite-difference method (denoted by ERR2). The solid lines
represent the globally optimized first-order compensation after the
two-way splitting Fourier finite-difference method (denoted by
GOE1).
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In other words, all these compensation methods can improve the

accuracy over the dip range, but the optimized first-order com-

pensation has the greatest improvement.

Figure 3 shows velocity contrast versus phase angle of the

expanded square-root operator under relative error of 1%. The

two-way splitting FFD method always shows the worst accuracy

among all methods listed; the first-order compensation, second-

order compensation and optimized first-order compensation have

different improvements on it. Each curve has almost the same

trend, and furthermore, all curves are nearly horizontal for the

whole range of velocity contrasts except the range close to the

weak velocity contrast area. This means all methods have a sta-

ble level of improvements for various velocity contrasts. For

example, the accurate dip angle for a velocity contrast of 70%

is about 35�, 42�, 48�, and 60�, respectively. Obviously, our

optimized first-order compensation has the most significant

improvement among these three compensations, at about 25�.
This improvement is almost twice that of the second-order

compensation.

Optimizing the second-order compensation can also greatly

improve the accuracy with two additional Fourier transforms

required, but its accurate dip angle is only about 64�, which is

slightly higher than that of the optimized first-order compensa-

tion’s 60�. Thus, we recommend using our optimized first-order

compensation because it is a reasonable tradeoff between com-

putational cost and phase accuracy.

Only the case in a diagonal direction is shown in Figure 3. If

the accurate dip angle was found among all azimuth angles, the

error curve of our optimized first-order compensation would

show a slight fluctuation around the curve listed here. This is

mainly because the maximum error may not always be located

at diagonal directions like the other unoptimized methods (see

Figure 1). But the general trend would be quite similar to the

case in diagonal direction because the fluctuation is very limited

only within a fixed error range of 1%.

NUMERICAL EXAMPLES

Migration impulse responses

In this section, we illustrate the theoretical accuracy analyses

by impulse responses. A 3D homogeneous medium is defined

on a grid system of 512� 512� 256 with grid spacing of 10 m.

A single input trace is located at the center of the upper surface.

The traveltime is 500 ms with 2 ms sampling. The dominant

frequency of a Ricker wavelet is 25 Hz. The real velocity is

v¼ 4500 m=s with the reference velocity being v0¼ 1500 m=s

(i.e., strong velocity contrast of (v – v0)=v � 70%). We use a

tapered boundary of 15 traces along each side of the depth slab.

Figure 4 shows vertical slices of four methods: the two-way

splitting FFD method, the first-order compensation, the second-

order compensation, and the optimized first-order compensation.

Each subfigure contains a left and right part, which are vertical

profiles along inline and diagonal directions, respectively. Obvi-

ously, the first- and second-order compensations have no influ-

ence on the accuracy in inline and crossline directions. Their

contributions are mainly around diagonal directions where there

are significant two-way splitting errors. The angle shown on the

right denotes the accurate dip angle in diagonal directions, which

can be read from Figure 3. Figure 4c shows that the two-way

splitting error is almost reduced completely under the dip angle

of 48� because the accurate dip angle in diagonal directions

(i.e., 47�) is close to that of those in inline and crossline direc-

tions (i.e., 48�).
Figure 4d shows that globally optimized first-order compensa-

tion can greatly reduce the two-way splitting error. The accurate

dip angle in diagonal directions is now up to 60�, which is

much higher than that of the unoptimized first-order compensa-

tion (42�). Meanwhile, we see that the accuracy in inline and

crossline directions is preserved since the accurate dip angle in

inline and crossline directions is still up to 70�.
Figure 5 shows depth slices of four methods: the two-way

splitting FFD method, first-order compensation, second-order

compensation, and optimized first-order compensation. Three

depth levels are selected corresponding to dip angles of 45�,
60�, and 75�, respectively. Each subfigure contains four equiva-

lent parts and each part corresponds to a method. Obviously,

there is almost no splitting error at the dip angle of 45� since

the wave fronts in all parts are close to theoretical positions

(indicated by a dashed circle). At the dip angle of 60�, however,

the two-way splitting error is significant for the two-way split-

ting FFD method, especially in diagonal directions where the

wave fronts deviate from theoretical positions.

After using the first- and second-order compensations, the two-

way splitting error is greatly reduced since the wave fronts

appear to be much more circular. However, the wave fronts after

the compensations are still not close to the theoretical positions.

In contrast, the optimized first-order compensation produces a

perfect circular response that is almost exactly on the theoretical

position (see upper-right corner of each subfigure in Figure 5).

Although the total error of our optimized first-order compensation

Figure 3. Velocity contrast versus dip angle in diagonal direction.
The velocity contrast is defined as (v–v0)=v�100%. The dot
dashed line represents the method using first-order compensation
after the two-way splitting Fourier finite-difference method
(denoted by ERR1). The long dashed line represents the method
using second-order compensation after the two-way splitting Fou-
rier finite-difference method (denoted by ERR2). The solid line
represents the globally optimized first-order compensation after
the two-way splitting Fourier finite-difference method (denoted
by GOE1).
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is still fairly large at the dip angle of 75�, the situation is much

better than that of the unoptimized compensations.

Under the same hardware and software environments, the

two-way splitting FFD method requires 1908.76 CPU seconds,

whereas the three compensations — first-order compensation,

second-order compensation, and optimized first-order compensa-

tion — require 2599.06, 3189.04, and 2623.51 CPU seconds,

respectively. Compared with the two-way splitting FFD method,

the increasing computational cost of the first-order compensation

is about one-third of the cost; that of optimized first-order

Figure 4. Vertical profiles at source location using different methods. (a) The two-way splitting Fourier finite-difference method (indi-
cated by FFD2); (b) the first-order compensation after the two-way splitting Fourier finite-difference method (indicated by ERR1); (c) the
second-order compensation after the two-way splitting Fourier finite-difference method (indicated by ERR2); (d) the globally optimized
first-order compensation after the two-way splitting Fourier finite-difference method (indicated by GOE1). Each subfigure contains two
parts: the left and right parts are vertical profiles along inline and diagonal directions, respectively. The dashed semicircle denotes the
accurate position. The angle shown in the right part denotes the accurate dip angle in diagonal directions, which can be read from Figure
3. The real velocity of the homogeneous medium is v ¼4500 m=s, and the reference velocity for each panel is v0¼ 1500 m=s. The grid
interval used in migration is 10 m. The dominant frequency of the Ricker wavelet is 25 Hz.

Figure 5. Depth slices of 3D impulse responses at different dip angles. (a) 45� (z¼1590 m); (b) 60� (z¼1125 m); (c) 75� (z¼582 m). Each
subfigure consists of four equivalent parts, and different parts use different methods. The left-upper quadrant shows FFD2, the left-bottom
quadrant shows ERR1, the right-bottom quadrant shows ERR2, and the right-upper quadrant shows GOE1. The dashed circle denotes the
accurate position. Parameters used here is the same as in Figure 4.
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compensation is also about one-third; and that of the second-

order compensation is up to two-thirds. The increased computa-

tional cost of first-order compensation and optimized first-order

compensation is very similar but the increased computational

cost of second-order compensation is nearly twice that of first-

order compensation.

Migration on SEG=EAGE salt

To verify the capabilities of three compensation methods on

imaging 3D complex structures, we test the zero-offset migra-

tion problem (Ober et al., 1997) of the SEG=EAGE 3D salt

model (Aminzadeh et al., 1996). The grid spacing is 40 m along

the x- and y-directions and 20 m along depth direction. Eighty

frequency components are extrapolated during migration. We

use a tapered boundary of 15 traces along each side of the depth

slab. In diagonal directions, the two-way splitting FFD method

should have the worst accuracy among all azimuths. Thus, we

extract the vertical slice along the diagonal direction at

x¼ yþ 600 m to illustrate the contributions of two-way splitting

error compensation, as shown in Figure 6.

Generally, each method can well image the small-angle struc-

tures and even steep structures above the salt dome, but each

method has a poor image for the left boundary of the salt root

as well as the dipping structures under the salt. However, there

are some significant improvements at the locations indicated by

white arrows (see Figure 6). First, the optimized first-order com-

pensation obtained a much sharper fault structure (see the posi-

tion indicated by the middle white arrow) than the structure

obtained by the two-way splitting FFD method and first-order

compensation. Second, the optimized first-order compensation

shows a much clearer image background within the salt dome

(see the position indicated by the upper white arrow). Finally,

the optimized first-order compensation shows a much more con-

tinuous subsurface under the salt dome (see the position indi-

cated by the bottom white arrow).

In addition, there are also some significant improvements

within the areas enclosed by rectangular boxes. For a detailed

comparison, we zoom in on the images within the rectangular

areas (see Figure 7). The bottom salt boundary was not well

imaged by the two-way splitting FFD method because the image

is far away from the correct position (indicated by the dashed

line). Furthermore, there are relatively strong-energy parallel

events left in the image, which are regarded as image artifacts.

The first-order compensation can pull the image of the bottom

salt boundary much closer to the correct position and reduces

the image artifacts partially. In contrast, the optimized first-order

compensation can locate the bottom salt boundary accurately

and reduce the image artifacts completely. Figure 8 shows the

depth slices at 2600 m. Similarly to the vertical slices shown in

Figure 7, the two-way splitting FFD could not image the salt

root very well, whereas the optimized first-order compensation

can image the same target much better.

Under the same hardware and software environments, the

two-way splitting FFD method runs for 383.83 CPU seconds,

while the first-order compensation and the optimized first-order

compensation run for 528.92 and 514.26 CPU seconds,

Figure 6. Vertical profiles along diagonal direction of 3D data
sets. (a) SEG=EAGE salt model; (b) image result obtained by
FFD2; (c) image result obtained by ERR1; (d) image result
obtained by GOE1.

Figure 7. Comparison of the local details within the rectangular
areas in Figure 6. The dashed line denotes the bottom salt bound-
ary. (a) SEG=EAGE salt model; (b) image result obtained by
FFD2; (c) image result obtained by ERR1; (d) image result
obtained by GOE1.
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respectively. The increase of computational cost after using

first-order compensation is about one-third, which is consistent

with the previous numerical results.

DISCUSSIONS

During the optimization procedure, we found that the accu-

racy of the optimized operator is highly dependent on the opti-

mization strategy. If all constants (about six) are optimized at

the same time, the convergence is very slow, and it is difficult

for us to obtain an excellent optimized operator. In our scheme,

we first optimize a 2D FFD propagator and try to improve its

accurate propagation angle. Then we substitute these 2D opti-

mized coefficients into the 3D FFD operator and create a two-

way splitting operator. Finally, we derive the compensation term

and optimize its constant coefficients by optimizing the operator

as a whole, where we need to relax the 2D optimized coeffi-

cients to improve the accuracy as much as possible. We only

performed our optimization using a simulated annealing algo-

rithm. We are not sure whether we can further improve the accu-

racy of our compensation by using other optimization methods

(e.g., genetic algorithms).

The proposed compensation scheme can be applied to the fi-

nite-difference method to reduce two-way splitting error. But

the contribution would be not as significant as it is in this paper.

On the one hand, the two-way splitting error of the finite-differ-

ence method is much higher than that of the FFD method

(Zhang et al., 2008); thus, a more powerful compensation is

needed by the two-way splitting finite-difference method. On

the other hand, the compensation scheme is limited to small

two-way splitting error because there are two Taylor expansions

involved during its operator expansion. Our numerical experi-

ments suggest that the accurate dip angle obtained by optimized

second-order compensation is only a few degrees (about 3�)
higher than that obtained by the optimized first-order compensa-

tion. The contribution of the second-order compensation for the

FFD method is so slight that we could not expect more for the

finite-difference method.

The fast Fourier transform used in our code is a hybrid-radix

algorithm. If we adopt a much faster implementation of Fourier

transform (e.g., graphics card based parallel implementation, see

Zhang et al., 2009a), the runtime proportion of Fourier transform

would decrease rapidly. As a result, the increase in computational

cost caused by adding Fourier transforms would be fairly minor.

However, we could not further improve the accuracy even by

using optimized second-order compensation. Thus, efforts should

be directed to developing a more powerful method to compensate

the two-way splitting error to obtain a circle response in a much

higher wide-angle area (e.g., 70� or 80�).
Although we only show a zero-offset case, the main benefits

will occur in prestack migration because much wider angles

emerge when wavefields are propagating between sources and

receivers. In addition, our scheme is not restricted to just the

isotropic case. This method can help any medium which should

have circular depth slice impulse responses, such as VTI media.

CONCLUSIONS

Wide-angle propagation is very important when using one-

way wave equation methods to image complex structures. The

two-way splitting FFD method is widely used because of its

high computational efficiency and outstanding ability to image

dipping structures in strong lateral velocity contrasts. However,

the introduction of azimuthal anisotropy caused by two-way

splitting diminishes the benefits of using the finite-difference

scheme. This two-way splitting error will lead to large errors of

image positions or even complete failure.

In this paper, we showed how to reduce the two-way splitting

error using a dual-domain method. This method uses the basic

idea of the traditional split-step Fourier method to reduce two-

way splitting error rather than to reduce expanded error. It is a

natural combination of the two-way splitting FFD method and

the generalized-screen method. It adds a compensation term,

similar to a high-order generalized-screen correction term, to

reduce the two-way splitting error of the FFD method. Based on

the globally optimized two-way splitting FFD method, our opti-

mization scheme of the compensation part greatly improves the

accurate propagation angle. Thus, it reduces computational cost

caused by high-order corrections and requires only first-order

compensation.

The most expensive parts of solving the two-way splitting

FFD method are the two 2D Fourier transforms and an alternat-

ing-direction-implicit finite-difference scheme. After applying

our compensation scheme, one additional 2D Fourier transform

is required. Numerical experiments show that the increase of

computational cost after using our compensation is only about

one-third compared to the two-way splitting FFD method. The

constraint on the accurate dip angle of traditional two-way split-

ting FFD method emerges in the diagonal directions, which is

Figure 8. Comparison of depth slices at the salt root. (a) SEG=
EAGE salt model; (b) image result obtained by FFD2; (c) image
result obtained by ERR1; (d) image result obtained by GOE1. The
slices are at the depth of 2600 m. The dashed line in (a) indicates
the diagonal direction used in vertical profiles (Figure 6).
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only about 35� under relative error of 1%. In contrast, after

applying our compensation scheme, the accurate dip angle

among all azimuths is at least 60�.
Compared with a purely wavenumber-domain method (a single-

domain approach), our scheme is applicable to lateral velocity

variations even in the case of strong velocity contrast. Com-

pared with the spatial-domain finite-difference method, our

scheme is much faster because it is solved by fast Fourier trans-

forms. It naturally reduces to the traditional phase-shift method

when the velocity becomes homogeneous. Thus, the compensa-

tion can be omitted when splitting error is small enough (e.g.,

for weak velocity contrasts or small dip angles). Our compensa-

tion scheme has a good tradeoff between computational cost

and accurate propagation angle.

ACKNOWLEDGMENTS

We are grateful to John Etgen for his insightful suggestions and

patient corrections, which greatly improve the quality and the legi-

bility of our manuscript. We also thank anonymous reviewers for

helpful comments and suggestions. This research was supported by

the Major State Basic Research Development Program of China

(973 Program) (Grant No. 2009CB219404), the National Natural

Science Foundation of China (Grant No. 41074092), and the

National Major Project of China (Grant No. 2011ZX05008-006).

REFERENCES

Aminzadeh, F., N. Burkhard, J. Long, T. Kunz, and P. Duclos, 1996, Three
dimensional SEG=EAEG models — An update: The Leading Edge, 15,
131–134, doi:10.1190/1.1437283.

Biondi, B., 2002, Stable wide-angle Fourier finite-difference downward
extrapolation of 3-D wavefields: Geophysics, 67, 872–882, doi:10.1190/
1.1484530.

Brown, D. L., 1983, Applications of operator separation in reflection seis-
mology: Geophysics, 48, 288–294, doi:10.1190/1.1441468.

Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific
Publications, Inc.

Collino, F., and P. Joly, 1995, Splitting of operators, alternate directions,
and paraxial approximations for the three-dimensional wave equation:
SIAM Journal on Scientific Computing, 16, 1019–1048, doi:10.1137/
0916059.

de Hoop, M. V., J. H. Le Rousseau, and R. S. Wu, 2000, Generalization of
the phase-screen approximation for the scattering of acoustic waves:
Wave Motion, 31, 43–70, doi:10.1016/S0165-2125(99)00026-8.

Douglas, J., 1962, Alternating direction methods for three space variables:
Numerische Mathematik, 4, 41–63, doi:10.1007/BF01386295.

Etgen, J., S. H. Gray, and Y. Zhang, 2009, An overview of depth imaging
in exploration geophysics: Geophysics, 74, no. 6, WCA5–WCA17,
doi:10.1190/1.3223188.

Fei, T. W., and J. T. Etgen, 2002, Domain decomposition for 3-D finite-
difference depth extrapolation: 72nd Annual International Meeting,
SEG, Expanded Abstracts, 1160–1163.

Gazdag, J., 1978, Wave equation migration with the phase-shift method:
Geophysics, 43, 1342–1351, doi:10.1190/1.1440899.

Gazdag, J., and P. Sguazzero, 1984, Migration of seismic data by phase
shift plus interpolation: Geophysics, 49, 124–131, doi:10.1190/
1.1441643.

Graves, R. W., and R. W. Clayton, 1990, Modeling acoustic waves with
paraxial extrapolation: Geophysics, 55, 306–319, doi:10.1190/
1.1442838.

Huang, L. J., and M. C. Fehler, 2000, Globally optimized Fourier finite-
difference migration method: 70th Annual International Meeting, SEG,
Expanded Abstracts, 802–805.

Jin, S., R. S. Wu, and C. Peng, 1999, Seismic depth migration with
pseudo-screen propagator: Computational Geosciences, 3, 321–335,
doi:10.1023/A:1011587227696.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, 1983, Optimization by
simulated annealing: Science, 220, 671–680, doi:10.1126/
science.220.4598.671.

Lee, M. W., and S. Y. Suh, 1985, Optimization of one-way wave equa-
tions: Geophysics, 50, 1634–1637, doi:10.1190/1.1441853.

Le Rousseau, J. H., and M. V. de Hoop, 2001, Modeling and imaging with
the scalar generalized-screen algorithms in isotropic media: Geophysics,
66, 1551–1568, doi:10.1190/1.1487101.

Li, Z., 1991, Compensating finite-difference errors in 3-D migration and
modeling: Geophysics, 56, 1650–1660, doi:10.1190/1.1442975.

Liu, L., and J. Zhang, 2006, 3D wavefield extrapolation with optimum
split-step Fourier method: Geophysics, 71, no. 3, T95–T108,
doi:10.1190/1.2197493.

Ober, C. C., R. A. Oldfield, D. E. Womble, and C. C. Mosher, 1997, Seis-
mic imaging on massively parallel computers: 67th Annual Interna-
tional Meeting, SEG, Expanded Abstracts, 1418–1421.

Peaceman, D.W., and H.H. Rachford Jr., 1955, The numerical solution of
parabolic and elliptic differential equations: SIAM Journal on Applied
Mathematics, 3, 28–41, doi:10.1137/0103003.

Rickett, J., J. Claerbout, and S. Fomel, 1998, Implicit 3-D depth migra-
tion by wavefield extrapolation with helical boundary conditions:
68th Annual International Meeting, SEG, Expanded Abstracts, 1124–
1127.
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