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ABSTRACT
The Fourier finite-difference propagator and the generalized-screen propagator are
two general high-order forms of one-way dual-domain methods. We compare these
two propagators mainly on phase accuracy, computational efficiency and 3D exten-
sion. A comparison of phase accuracy shows that the high-order generalized-screen
propagator is preferable to the Fourier finite-difference propagator for heterogeneous
media with a weak velocity contrast and wide dip angle. With increasing veloc-
ity contrast, the accuracy improvement gained by the high-order generalized-screen
propagator declines rapidly. The Fourier finite-difference propagator is more robust
and flexible to lateral velocity variations than the generalized-screen propagator. The
2D Fourier finite-difference propagator is superior to the 2D generalized-screen prop-
agator when the velocity contrast is stronger than 23%. Despite the two-way splitting
error, the 3D Fourier finite-difference propagator is more accurate than the second-
order generalized-screen propagator when the velocity contrast is stronger than 20%
and is more accurate than the fourth-order generalized-screen propagator when the
velocity contrast is stronger than 40%. Numerical experiments on the SEG/EAGE
salt model demonstrate that the Fourier finite-difference propagator behaves better
than the generalized-screen propagator when imaging steep salt boundary and faults
beneath the salt body. Under the same hardware and software conditions, the com-
putational cost of the Fourier finite-difference propagator in our implementation is
greater than that of the second-order generalized-screen propagator but smaller than
that of the third-order generalized-screen propagator. Compared with the Fourier
finite-difference propagator, the generalized-screen propagator requires fewer grid
points per wavelength and has more potential to improve running speed in the pres-
ence of a much faster Fourier transform. These analyses are applicable for both
forward modelling and depth migration.

INTRODUCTIO N

One-way wave-equation migration is a rapidly growing tool
for complex media imaging. Many methods have been devel-
oped during the last three decades, such as the finite-difference
method (Claerbout 1985), Fourier method (Gazdag 1978)
and dual-domain method (e.g., Stoffa et al. 1990; Wu 1994;
Ristow and Rühl 1994; Jin, Wu and Peng 1999; de Hoop,

∗E-mail: zjh@mail.igcas.ac.cn

Le Rousseau and Wu 2000; Le Rousseau and de Hoop 2001;
Wu 2003). The finite-difference method can handle strong
lateral velocity variations but it is dip-limited and has appar-
ent numerical dispersions. The Fourier method is accurate up
to 90◦ for homogeneous media and has almost no numeri-
cal dispersion but it has difficulty in handling lateral velocity
variations.

The dual-domain method shuttles the wavefield between the
space and wavenumber domains using fast Fourier transforms
for each extrapolation step. The split-step Fourier method
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(Stoffa et al. 1990) or phase-screen method (Wu 1994) is
the simplest dual-domain method, where only time-delay cor-
rection is included. The Fourier finite-difference propagator
(Ristow and Rühl 1994; Biondi 2002) and generalized-screen
propagator (de Hoop et al. 2000; Le Rousseau and de Hoop
2001) are two general forms of the high-order dual-domain
method.

The Fourier finite-difference method improves the accuracy
by cascading an implicit finite-difference scheme to the split-
step Fourier method. It can handle strong lateral velocity vari-
ations (e.g., salt-related model) and steep dips. However, it
has three main disadvantages due to using an implicit finite-
difference scheme, that is, low computational efficiency, split-
ting error for 3D exploration (Brown 1983; Zhang et al. 2008)
and numerical dispersion for a coarse grid (Claerbout 1985).

Compared with the Fourier finite-difference method, the
generalized-screen method directly extends the phase-screen
method to complex media rather than using finite-difference
correction, thus it has high efficiency, no splitting error and
almost no numerical dispersion. In the presence of a large
or strong velocity contrast, a high-order generalized-screen
propagator is usually required, which undoubtedly increases
computational cost. In addition, the generalized-screen prop-
agator involves two Taylor expansions to the propagator (Le
Rousseau and de Hoop 2001; Liu and Zhang 2006), thus the
contribution of the high-order term becomes weak.

In 3D strongly heterogeneous media, the Fourier finite-
difference propagator has high accuracy in in-line/cross-line
direction but has low accuracy in diagonal directions caused
by operator splitting (Brown 1983; Zhang et al. 2008). On
the other hand, the Fourier finite-difference propagator de-
generates into the phase-shift method in homogeneous media,
which means there is no splitting error. However, it is still un-
clear whether and when the splitting error of the 3D Fourier
finite-difference propagator would be bigger than the expan-
sion error of the generalized-screen propagator. In addition,
the generalized-screen propagator has several orders while the
Fourier finite-difference propagator commonly-used has only
one order. It is unclear whether the high-order generalized-
screen propagator always has less computational cost than the
Fourier finite-difference propagator. Therefore, it is difficult
to select the most proper method in practical applications.

Cheng, Cheng and Toksöz (1996) presented a 3D error
analysis of the phase-screen method. Huang and Fehler (1998)
pointed out that the differences between the accuracy of
the non-symmetrically and symmetrically split-step Fourier
marching solutions are insignificant. The split-step Fourier
propagator is shown to be accurate up to a wide angle (about

45◦) for a weak velocity contrast (10%) under a relative error
of 5%. Under large and strong velocity contrasts, a high-order
propagator, such as the Fourier finite-difference propagator
or generalized-screen propagator, is needed for forward mod-
elling and depth migration. However, there are no thoroughly
accurate analyses or a comparison of these two methods in
the literature.

This paper compares the Fourier finite-difference method
with the generalized-screen method mainly in three aspects:
phase accuracy, computational efficiency and 3D extension.
There are some skills to improve the performance of the
Fourier finite-difference propagator and generalized-screen
propagator, such as the 1/6 trick (Claerbout 1985) for the
finite-difference scheme, optimized coefficients for the Fourier
finite-difference propagator (Ristow and Rühl 1994; Xie and
Wu 1999; Huang and Fehler 2000) and optimized coefficients
for the generalized-screen propagator (Liu and Zhang 2006;
Zhang and Liu 2007). We only discuss the most general form
without any optimization or tricks to investigate the basic dif-
ference. After brief derivations of the Fourier finite-difference
and generalized-screen operators, we analyse the flexibility
and sensitivity on lateral velocity variations. Then, we discuss
3D extension and computational cost. Finally, we illustrate
these theoretical analyses using impulse responses and numer-
ical experiments.

METHODOLOGY

The Fourier finite-difference operator

The square-root operator of the one-way wave equation reads
(Claerbout 1985):

kz =
√

ω2

v2
+ ∂xx + ∂yy, (1)

where ∂xx = ∂2

∂x2 , ∂yy = ∂2

∂y2 , ω is the circular frequency and
v = v(x, y, z) is the velocity function. According to the per-
turbation approach (Wu 1994), a constant reference velocity
function v0 = v0(z) can be introduced to handle the homoge-
neous background for each depth step. The operator kz for
real velocity v = v(x, y, z) can be expanded by the second-
order Taylor expansion:

kz ≈ ω

v
+ 1

2
v

ω

(
∂xx + ∂yy

) − 1
8

v3

ω3
(∂xx + ∂yy)2 (2)

and similarly for the reference velocity v0 = v0(z):

kz0 ≈ ω

v0
+ 1

2
v0

ω

(
∂xx + ∂yy

) − 1
8

v3
0

ω3

(
∂xx + ∂yy

)2
. (3)
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Substituting equations (2) and (3) into identical equation kz =
kz0 + (kz − kz0) and using a continued-fraction expansion, we
obtain the popular Fourier finite-difference operator (Ristow
and Rühl 1994; Biondi 2002):

kz ≈ kz0 + ω�s + b
(
∂xx + ∂yy

)
1 + a

(
∂xx + ∂yy

) , (4)

where kz0 =
√

ω2/v2
0 + ∂xx + ∂yy, �s = 1/v − 1/v0, a =

0.25(v2 + vv0 + v2
0)/ω2 and b = 0.5(v − v0)/ω. On the right-

hand side of equation (4), the first term handles the phase
shift in the reference velocity (Gazdag 1978); the second term
handles the time-delay correction for slowness perturbations
(Stoffa et al. 1990; Wu 1994); and the third term handles
the finite-difference correction for a large velocity contrast
and wide dip angles (Ristow and Rühl 1994). The first two
terms constitute the basics for most dual-domain methods,
the so-called split-step Fourier method (Stoffa et al. 1990) or
phase screen method (Wu 1994). The direct implementation
of the implicit finite-difference scheme in the third term
requires solving large sparse-matrix equations, which is
extremely expensive. A practical way is to further split it
into two independent operators by the two-way splitting
technique (Brown 1983):

b
(
∂xx + ∂yy

)
1 + a

(
∂xx + ∂yy

) ≈ b∂xx

1 + a∂xx
+ b∂yy

1 + a∂yy
, (5)

which can efficiently be solved as two cascaded tridiagonal
systems. Thus, the two-way splitting Fourier finite-difference
operator is:

kz ≈ kz0 + ω�s + b∂xx

1 + a∂xx
+ b∂yy

1 + a∂yy
. (6)

The error caused by equation (5) is called the splitting error.
There are several approaches to reduce this error (Li 1991;
Ristow and Rühl 1997; Wang 2001; Zhang et al. 2008) but
we employ none of them in this paper for a fundamental
comparison.

The generalized-screen operator

Substituting equations (2) and (3) into the square-root op-

erator kz = kz0

√
1 − (ω2s2

0 − ω2s2)/k2
z0 and using the Taylor

expansion, we obtain:

kz = kz0 + kz0

∞∑
n=1

an

[
ω2

(
s2

0 − s2
)

k2
z0

]n

, (7)

where s = 1/v(x, y, z), s0 = 1/v0(z) and an are binomial coeffi-
cients with the first four being a1 = −1

/
2, a2 = −1

/
8, a3 =

−1
/

16 and a4 = −5
/

128. Considering:

�s = s − s0 = s0

∞∑
n=1

an

(
1 − s2

s2
0

)n

, (8)

we obtain the generalized-screen operator:

kz = kz0 + ω�s + kz0

∞∑
n=1

an

(
ω2s2

0 − ω2s2

k2
z0

)n

−ωs0

∞∑
n=1

an

(
1 − s2

s2
0

)n

.
(9)

The first two terms on the right-hand side of equation (9) are
the same as the first two terms of the Fourier finite-difference
propagator shown in equation (6). In implementation, the ex-
ponential function of the third and fourth terms needs another
Taylor expansion (i.e., ex ≈ 1 + x) (Le Rousseau and de Hoop
2001; Liu and Zhang 2006) that causes additional phase error.
This error can be compensated on the whole by the normal-
izing operator proposed by De Hoop et al. (2000). Thus, for
simplicity, we use equation (9) to evaluate the performance of
the generalized-screen operator.

RELATIVE ERROR A NALYSES

To exhibit both the advantages and disadvantages of the meth-
ods, we numerically evaluate dispersion relations using rela-
tive phase error. First, we transform the spatial partial deriva-
tives into the wavenumber domain using relations of ∂ xx ⇔
−k2

x and ∂ yy ⇔ −k2
y , where kx and ky are transversal

wavenumbers. We then represent transversal wavenumbers
in terms of azimuth angle ϕ and dip angle θ as (Claerbout
1985; Li 1991):

kx = ω

v
sin θ cos ϕ and ky = ω

v
sin θ sin ϕ. (10)

Thus, the relative phase error of the Fourier finite-difference
propagator is defined as:

RFFD (ϕ, θ ; v0, v) =
∣∣kF F D

z − k̄z

∣∣
k̄z

× 100%, (11)

where the accurate vertical wavenumber is:

k̄z = ω

v
cos θ (12)

and the approximate vertical wavenumber is:

kFFD
z ≈ k̃z0 + ω�s − bk2

x

1 − ak2
x

− bk2
y

1 − ak2
y

, (13)
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with k̃z0 =
√

ω2/v2
0 − k2

x − k2
y . Similarly, the relative phase er-

ror of the generalized-screen propagator is defined as:

RGSP (ϕ, θ ; v0, v) =
∣∣kGSP

z − k̄z

∣∣
k̄z

× 100%, (14)

where the approximate vertical wavenumber is:

kGSP
z ≈ k̃z0 + ω�s + ω

N∑
n=1

an
(
s2

0 − s2
)n

(
ω2n−1

k̃2n−1
z0

− 1

s2n−1
0

)
.

(15)

Figure 1 shows the velocity contrast versus phase angle of
the expanded square-root operator under relative error of 1%
(a), 5% (b), 10% (c) and 20% (d), respectively. The velocity
contrast is defined as (v − v0)/v × 100%. A small veloc-
ity contrast denotes weak lateral velocity variations and a
big one denotes strong lateral velocity variations. For exam-
ple, it equals 0% for laterally homogenous media and equals
100% for extremely strong lateral velocity variations. The
split-step Fourier method always shows the worst accuracy
among all methods and the Fourier finite-difference propaga-
tor and generalized-screen propagator have different improve-
ments on it for different velocity contrasts. In the large and
strong velocity contrast area, the two-way splitting Fourier
finite-difference propagator [see the solid line indicated by
FFD90 for ϕ = 90◦ (i.e., the in-line/cross-line direction) and
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Figure 1 The velocity contrast versus the
phase angle of the expanded square-root op-
erator under a relative phase error of 1% (a),
5% (b), 10% (c) and 20% (d), respectively.
The velocity contrast is defined as (v −
v0)/v × 100%. A small velocity contrast de-
notes weak lateral velocity variations and a
big one denotes strong lateral velocity varia-
tions. The dashed-dot line denotes the split-
step Fourier method; the solid line indicated
by FFD90 and the dashed line indicated by
FFD45 denote the Fourier finite-difference
method in in-line/cross-line and diagonal di-
rections, respectively; and the solid lines in-
dicated by 1–4 denote the first four orders
of the generalized-screen method, i.e., GSP1,
GSP2, GSP3 and GSP4, respectively. For
each sub-figure, above the line the error is
larger than the chosen relative error, below
it is smaller.

the dashed line indicated by FFD45 for ϕ = 45◦ (i.e., the diag-
onal direction)] has a much higher propagation angle than the
generalized-screen propagator (see the solid lines indicated by
numbers); however, the situation is the opposite in a weak
velocity contrast area.

The fourth-order generalized-screen propagator (GSP4) is
more attractive for the wide dip angle within the velocity con-
trast of 40% since both the in-line/cross-line and diagonal
directions of the Fourier finite-difference propagator have a
lower accurate dip angle. However, the lower order of the
generalized-screen propagator has fewer advantages. For ex-
ample, the GSP3 is more attractive only within the velocity
contrast of 30% and the GSP2 only within 20%, as shown in
Fig. 1(a).

For different relative errors shown in Fig. 1(a–d), the first
four orders of the generalized-screen propagator are separate
with each other in a weak velocity contrast area; whereas,
they decline and get together gradually to the curve of the
split-step Fourier method (dashed-dot line) with increasing
velocity contrast. This indicates that the higher order of the
generalized-screen propagator takes apparent effects for a
weak heterogeneous media; whereas, the effect of the high-
order generalized-screen propagator is considerably weak
under a strong velocity contrast. Therefore, the Fourier
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finite-difference propagator is more flexible than the
generalized-screen propagator in handling large and strong
velocity contrasts.

Under a relative error of 1%, the worst dip angle of the
generalized-screen propagator is smaller than 10◦; in contrast,
the worst accuracy of the Fourier finite-difference propagator
is greater than 35◦. Under a relative error of 5%, the worst dip
angle of the generalized-screen propagator is smaller than 20◦;
in contrast, the worst dip angle of the Fourier finite-difference
propagator is greater than 47◦. In addition, the curve of the
generalized-screen propagator is steep on the whole; whereas,
the curve of the Fourier finite-difference propagator is nearly
horizontal, except for a very weak velocity contrast area. As
shown in Fig. 1(a), the accurate dip angle of the GSP4 is about
70◦ under a velocity contrast of 10% but is only about 15◦ un-
der a velocity contrast of 70% (e.g., salt model). In contrast,
the accurate dip angle of the Fourier finite-difference prop-
agator is always greater than 35◦ (45◦ for in-line direction)
and varies only 10◦ under the same condition. Therefore, the
generalized-screen propagator is sensitive to lateral velocity
variations compared with the Fourier finite-difference propa-
gator.

In Fig. 1, the points of intersection among the curves
give the critical conditions of accuracy comparison. Note the
curve of the 3D Fourier finite-difference propagator in the in-

Figure 2 Vertical profiles at source location. The left, middle and right columns correspond to the velocity contrast (v − v0)/v × 100% of
60%(strong), 40%(large) and 20%(weak), respectively. The upper row denotes the generalized-screen propagator (a1–a3), where the vertical
slices are superposed, i.e., the left side shows the GSP1 (indicated by 1) and GSP3 (indicated by 3), the right side shows the GSP2 (indicated
by 2) and GSP4 (indicated by 4), respectively. The lower row denotes the two-way splitting Fourier finite-difference propagator, where each
sub-picture (b1–b3) consists of two equivalent parts, i.e., the left side and right side show the vertical slice along the diagonal direction (indicated
by diagonal) and along the in-line/cross-line direction (indicated by in-line), respectively. The dashed semicircle denotes the accurate position.

line/cross-line direction (FFD90) is the same as that of the 2D
Fourier finite-difference propagator. Under a relative error of
1%, the 2D Fourier finite-difference propagator is superior to
the GSP4 when the velocity contrast is stronger than 23%,
as shown in Fig. 1(a). The diagonal direction of the Fourier
finite-difference propagator (FFD45) has the most apparent
splitting error, i.e., the worst accuracy among all azimuths.
Despite this error, the 3D Fourier finite-difference propagator
is more accurate than the GSP4 when the velocity contrast is
stronger than 40%, as shown in Fig. 1(a–d). Under a relative
error of 5%, the 3D Fourier finite-difference propagator is
more accurate than the GSP1 when the velocity contrast is
stronger than 15%, as shown in Fig. 1(b).

MODELLING IMPULSE RESPONSES

In this section, we illustrate the theoretical accuracy analyses
by impulse responses. A 3D homogeneous medium is defined
on a grid system of 256 × 256 × 128 with grid spacing of
10 m. The source is located at the centre of the upper surface.
The traveltime is 450 ms with 2 ms sampling. The dominant
frequency of the Ricker wavelet is 20 Hz and the maximum
frequency is up to 80 Hz. The real velocity is v = 2500 m/s,
with the reference velocity being v0 = 1000 m/s (i.e., strong
velocity contrast of (v − v0)/v = 60%), 1500 m/s (i.e., large
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velocity contrast of (v − v0)/v = 40%) and 2000 m/s (i.e.,
weak velocity contrast of (v − v0)/v = 20%), respectively.
We use a tapered boundary of 15 traces to each side of the
transversal slab.

Figure 2 shows vertical slices of the generalized-screen
method (a1–a3) and of the two-way splitting Fourier finite-
difference method (b1–b3). The Fourier finite-difference prop-
agator has apparent numerical dispersions and evanescent
waves in a wide angle area in the presence of a strong velocity
contrast, as shown in Fig. 2(b1) and 2(b2). In contrast, the
generalized-screen propagator always has a clear background
and less numerical artefacts than the Fourier finite-difference
propagator.

Figure 3 Depth slices from the first four orders of the generalized-screen propagator. The left, middle and right columns correspond to the
velocity contrast (v − v0)/v × 100% of 60%, 40% and 20%, respectively. The upper, middle and bottom rows correspond to the dip angle
of 40◦(z = 860 m), 50◦(z = 720 m) and 60◦(z = 560 m), respectively. Each sub-picture consists of four equivalent parts, i.e., the left-upper
quadrant shows GSP1, the left-bottom quadrant shows GSP2, the right-bottom quadrant shows GSP3 and the right-upper quadrant shows
GSP4. The dashed circle denotes the accurate position.

It is obvious that the generalized-screen propagator has a
very low accurate angle under the strong velocity contrast
of 60% even for a high-order generalized-screen propagator
(see Fig. 2(a1)) but has a very high accurate dip angle un-
der the weak velocity contrast of 20% even for a low-order
generalized-screen propagator (see Fig. 2(a3)). As shown in
Fig. 2(b1–b3), in contrast, the Fourier finite-difference propa-
gator always has a stable performance although the diagonal
direction has a relatively lower accuracy (left-hand part) than
the in-line/cross-line direction (right-hand part).

In Fig. 3, we show depth slices of the generalized-screen
propagator in the same sub-picture to investigate contribu-
tions of the first four orders. Under a weak velocity contrast
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Figure 4 Depth slices from the two-way splitting Fourier finite-difference propagator. The left, middle and right columns correspond to the
velocity contrast (v − v0)/v × 100% of 60%, 40% and 20%, respectively. The upper, middle and bottom rows correspond to the dip angle of
40◦(z = 860 m), 50◦(z = 720 m) and 60◦(z = 560 m), respectively. The dashed circle denotes the accurate position.

(e.g., (v − v0)/v = 20%), the generalized-screen propagator,
except for the GSP1, has a very high accuracy whether for a
low dip angle, as shown in Fig. 3(a3), or for higher dip angles,
as shown in Figs 3(b3) and 3(c3). Unfortunately, this advan-
tage decays rapidly under a large or strong velocity contrast, as
shown in Figs 3(a1), 3(b1) and 3(c1). For example, the GSP4
has poor accuracy for a wide dip angle under the large velocity
contrast of 40%, as shown in Fig. 3(c2); in addition, the GSP4
has a poor accuracy for low dip angles under a strong velocity
contrast of 60%, as shown in Figs 3(a1) and 3(b1). From Figs
2 and 3, we see that the Fourier finite-difference propagator is
more flexible and less sensitive to velocity contrast compared
with the generalized-screen propagator.

The impulse responses of the generalized-screen propaga-
tor shown in Fig. 3 are invariable along different azimuthal
directions. In contrast, the impulse responses of the Fourier

finite-difference propagator shown in Fig. 4 are not a per-
fect circle as expected but a smoothed diamond. This er-
ror is introduced by the two-way splitting approximation
of the 3D finite-difference term, i.e., equation (5). It re-
duces the wide-angle accuracy at azimuths other than in-
line and cross-line directions. As shown in Fig. 4, the split-
ting error is slight for a low dip angle (a1–a3) but increases
gradually with a much higher dip angle (b1–b3 and c1–c3).
This error becomes significant for a wide angle (e.g., 60◦

in Fig. 4(c1)) in the presence of a strong velocity contrast
(v − v0)/v = 60%.

Under large and strong velocity contrasts, the Fourier finite-
difference propagator is very accurate despite the two-way
splitting error when comparing its slices, shown in Figs 4(a1),
4(b1) and 4(c1), with that of the generalized-screen propa-
gator, shown in Figs 3(a1), 3(b1) and 3(c1). Furthermore,
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the in-line/cross-line direction is always close to the accurate
position (indicated by the dashed circle). Therefore, the 3D
Fourier finite-difference propagator is more accurate than the
3D generalized-screen propagator on the whole in the pres-
ence of large and strong velocity contrasts, although it has the
worst accuracy in the diagonal direction.

In fact, these impulse responses shown in Figs 3 and 4
are consistent with the previous accuracy analyses shown in
Fig. 1. For example, the accurate angle of the GSP1 under
the velocity contrast of 20%, i.e., the solid line indicated by 1
in Fig. 1(a), is slightly lower than 40◦ while others are higher
than 40◦; these can be verified by Fig. 3(a3). For another exam-
ple, the 3D Fourier finite-difference propagator has apparent
splitting error in the diagonal direction (see the dashed line in
Fig. 1(a)) but is accurate in the in-line/cross-line direction for
a dip angle of 50◦ under a velocity contrast of 40% [(see the
solid line indicated by FFD90 in Fig. 1(a)]; these can be veri-
fied by Fig. 4(b2). Our impulse responses can also be verified
by results gained by Le Rousseau and de Hoop (2001) and by
Liu and Zhang (2006).

Under the same hardware and software conditions, the
Fourier finite-difference propagator spends 476.3 CPU sec-
onds, while the first four orders of the generalized-screen
propagator spend 370.7, 443.1, 517.5 and 597.3 CPU sec-

Figure 5 The vertical profile along the diagonal direction of the SEG/EAGE 3D salt model (a) and corresponding images obtained by the
two-way splitting Fourier finite-difference propagator (b), GSP1 (c), GSP4 (d), GSP2 (e) and GSP3 (f), respectively. The solid line denotes the
bottom salt boundary. The transversal and depth directions have the same scale.

onds, respectively. Obviously, the computational cost of the
generalized-screen propagator increases linearly with the or-
der used and the computational cost of the Fourier finite-
difference propagator lies between that of the GSP2 and GSP3.
There is no dip filter, since all methods are stable and produce
clear images. A hybrid radix fast Fourier transform, which is
one of the fastest algorithms, is used in our code.

MIGRATION FOR SEG/EAGE SALT

To verify the capabilities of the Fourier finite-difference
propagator and generalized-screen propagator on imaging
3D complex structures, we test on the zero-offset records
(Ober et al. 1997) of the SEG/EAGE 3D salt model
(Aminzadeh et al. 1996). We extract every other grid along
in-line and cross-line directions from the original data. That
is, the 3D grid system used here is of 250 × 250 × 210 with
the spacings of 40 m along the transversal direction and 20 m
along the depth direction. The frequency range for migration
is from 0 to 60 Hz. We use a tapered boundary of 5 traces to
each side of the transversal slab.

In the diagonal direction (i.e., x = y), the two-way splitting
Fourier finite-difference propagator has the worst accuracy
among all azimuths. Figure 5 shows the vertical slice of the
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model and images along the diagonal direction. It is obvious
that each method can well image small-angle structures but
poorly image the left boundary of the salt root. The latter may
be caused by an aperture problem, since the reflected wave-
fields are out of the receiver range. Since all slices are shown
in the same scale along the depth and transversal directions,
we see that the left boundary of the salt root has, at least, a
60◦ dip angle.

Both the steep salt boundary (indicated by the solid line) and
structures under the salt body (indicated by white arrows) are
well imaged by the two-way splitting Fourier finite-difference
propagator, as shown in Fig. 5(b). Although each higher order
of generalized-screen propagator can improve the image, the
result is not as good as that of the Fourier finite-difference
propagator even for the GSP4, as shown in Fig. 5(d). For
detailed comparison, images within the rectangular areas in
Fig. 5 are shown in Fig. 6. Obviously, the two-way split-
ting Fourier finite-difference propagator gives the best im-
ages among all methods listed. There are apparent artefacts
in the ellipse area for the low-order generalized-screen prop-
agator (GSP1 and GSP2), as shown in Fig. 6(c) and 6(e).
Figure 7 shows the horizontal slice of the velocity at depth
z = 2140 m (a) and its migration images. In the ellipse area of

Figure 6 Comparison of the local details within the rectangular areas
in Fig. 5. The solid line denotes the bottom salt boundary.

Fig. 7, the two-way splitting Fourier finite-difference propa-
gator well focuses the steep salt boundary (b) compared with
those obtained using GSP (c-f).

Under the same hardware and software conditions, the
Fourier finite-difference propagator spends 587.7 CPU sec-
onds, while the first four orders of the generalized-screen prop-
agator spend 466.3, 549.3, 630.2 and 1285.0 CPU seconds,
respectively. The computational cost of the Fourier finite-
difference propagator again is between those of GSP2 and
GSP3. We use a 60◦ dip filter in the wavenumber domain
for all methods to damp the strong artefacts especially for
GSP4. However, apparent noises still exist in the image ob-
tained using GSP4. In addition, the computational cost of
GSP4 is double that of GSP3, which is abnormal compared
with the linear cost relation shown in the experiment of im-
pulse responses. These indicate that GSP4 may have a stability
problem in the presence of a strong velocity contrast although
the normalizing operator is used.

D I S C U S S I O N S

From the above theoretical analyses and numerical experi-
ments, we see that the main disadvantages of the Fourier finite-
difference propagator, i.e., low computational efficiency,
splitting error for 3D exploration and numerical dispersion for
a coarse grid, are sometimes overstated when comparing with
the generalized-screen propagator. First, the two-way splitting
Fourier finite-difference propagator is not as expensive as usu-
ally considered since its computational cost is less than that
of the third-order generalized-screen propagator. Second, the
two-way splitting Fourier finite-difference propagator is more
accurate than the generalized-screen propagator under large
and strong velocity contrasts although the splitting error may
reduce the wide-angle accuracy. Finally, the Fourier finite-
difference propagator has fewer numerical artefacts than the
generalized-screen propagator when imaging the SEG/EAGE
salt model although it is not the case in impulse responses.
If we could reduce the splitting error without too much cost
(e.g., Zhang et al. 2008), the Fourier finite-difference propaga-
tor would be greatly superior to the fourth-order generalized-
screen propagator when the velocity contrast is bigger than
23% as in the 2D case rather than 40% in the 3D case.

Most of the computational cost of the generalized-screen
propagator is related to the operator order and speed of
the Fourier transform. Thus, the generalized-screen propa-
gator has a potential advantage that its efficiency can be
highly improved with a much faster Fourier transform. Com-
pared with the generalized-screen propagator, the Fourier
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Figure 7 Depth slice of the SEG/EAGE 3D salt model (a) and corresponding images obtained using the two-way splitting Fourier finite-difference
propagator (b), GSP4 (c), GSP1 (d), GSP2 (e) and GSP3 (f), respectively. The depth slice is at the depth of z = 2140 m.

finite-difference propagator has fewer benefits with a much
faster Fourier transform, since the main computational cost
of the Fourier finite-difference propagator lies on an implicit
finite-difference scheme which is difficult to be further accel-
erated. In addition, the generalized-screen propagator has no
splitting error and almost no numerical dispersion; thus an
attractive propagator can be produced if some improvements
were made on the phase accuracy for large or strong velocity
contrasts.

We only use zero-offset data on a salt-related model in our
experiments, where there are few steep dips. In the pre-stack
data, the paths connecting the reflectors to the sources and
receivers are usually at a wide angle (Biondi 2002). Thus,
the efficient wide-angle propagator is crucial and would take
more effects.

CONCLUSIONS

Without any tricks or optimized parameters, we compare
the two-way splitting Fourier finite-difference method and
the generalized-screen method to investigate the fundamen-
tal differences. The computational cost of the Fourier finite-

difference propagator in our experiment is between those of
the second and third-order generalized-screen propagators.
Based on relative phase errors, our accuracy analyses show
that the generalized-screen propagator has a higher accurate
propagation angle than the Fourier finite-difference propa-
gator when the velocity contrast (v – v)/v × 100% is weaker
than 40% for the fourth-order generalized-screen propagator,
30% for the third-order generalized-screen propagator, 20%
for the second-order generalized-screen propagator and 10%
for the first-order generalized-screen propagator, respectively.

However, the Fourier finite-difference propagator is supe-
rior to each order of generalized-screen propagator when the
velocity contrast is stronger than 40% despite the two-way
splitting error. Compared with the generalized-screen propa-
gator, the Fourier finite-difference propagator is more flexible
and less sensitive to the lateral velocity contrast. Impulse re-
sponses and migration results on the SEG/EAGE salt model
show that the two-way splitting Fourier finite-difference prop-
agator can well image steep dips and faults under the salt
body even in the diagonal direction; whereas, the generalized-
screen propagator can handle only complex structures without
the disturbance of a large and strong velocity contrast. When
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considering the numerical dispersion, computational cost and
accurate dip angle, the generalized-screen propagator is more
suitable to weak heterogeneous media while the Fourier finite-
difference propagator is more attractive for large and strong
heterogeneous media.
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Ristow D. and Rühl T. 1994. Fourier finite-difference migration. Geo-
physics 59, 1882–1893.
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