简历: |
1982年9月生于青海省西宁市 2017年1月—至今,中国科学院地质与地球物理研究所,岩石圈演化国家重点实验室,研究员 2012年1月—2012年8月,中国科学院地质与地球物理研究所,固体矿产资源研究室,副研究员 2004年9月—2009年5月,中国科学院地质与地球物理研究所,矿床学,博士学位 2000年9月—2004年7月,长安大学,资源学院,资源勘查工程,学士学位
|
|
研究方向: |
全球板块构造 板块构造理论实质是描述刚性板块在球面水平运动的规律,依据新生代海洋地质记录为主所获得的理论能否拓展至深时地质历史产生的复杂地质现象?另外何种动力驱使板块产生规律性的运动,地质历史时期是否存在转变?上述问题一直以来是板块构造理论所面临的挑战,是补充和发展板块构造理论、完善地球科学理论体系的重要研究内容。我重点是通过对古老岩石记录开展综合地球科学观测与模拟,试图揭示板块构造启动时间和板块构造驱动力问题,从而完善板块构造理论。板块运动能够重塑地表海陆格局、产生大量的岩浆作用,进而影响浅表资源、环境,然而这些作用在机制上如何影响浅表资源环境也是我一直以来关心的科学问题。 |
|
代表论著: |
Google Scholar
学术任职: 中国科学 编委
|
指导研究生或博士后#: |
1. |
董磊磊, 2018, 金矿中金的来源探索:以西天山两类金矿为例: 博士学位论文, 中国科学院地质与地球物理研究所, 北京. 133 pp.(2020-北京科技大学讲师) 支撑论文:编号13,14,18 |
2. |
谭舟#,2020.西南天山大地构造演化(2020-中国科学院新疆生态与地理研究所,副研究员) 支撑论文:编号57, 60 |
3. |
Hansman, R#,2021. 阿曼大地构造演化(2023 澳大利亚Northern Territory地质调查局地质师) 支撑论文:编号74 |
4. |
邓晨. 2021. 汇聚板块边缘高铜和高硫岩浆的形成背景,博士学位论文, 中国科学院地质与地球物理研究所, 北京. 156pp. (2022: 深圳,博士后) 支撑论文:编号15,85,95 |
5. |
刘艳红. 2021. 微量岩石痕量金测定技术的开发及其应用博士学位论文, 中国科学院地质与地球物理研究所, 北京. 137pp. (2022: 本所,高级工程师) 支撑论文:编号19,22,66 |
6 |
杨旭松. 2022. 东准噶尔地区地壳结构研究及其对陆壳增生的启示博士学位论文, 中国科学院地质与地球物理研究所, 北京. 99pp. (2022: 美国,博士后) 支撑论文: 编号23, 111 与田小波研究员共同指导 |
7. |
刘威. 2023. 欧亚大陆东缘矽卡岩矿床脱碳—碳通量计算博士学位论文, 中国科学院地质与地球物理研究所, 北京. 137pp. (2024: 西安,中国石油) 支撑论文:编号97, 110 |
8.
|
晏圣超. 2024. 铁氧化物磷灰石矿床:从成因到时空分布规律, 中国科学院地质与地球物理研究所, 北京. 130pp. (2024: 本所,博士后) 支撑论文: 编号28, 29, 32
|
|
|
第一作者及通讯作者*同行评议论文: |
32.
|
Yan, S.C.,Wan, B.*,Anenburg, M. and Mavrogenes, J.A., 2024. Silicate and iron phosphate melt immiscibility promotes REE enrichment. Geochemical Perspectives Letters, 32: 14-20.
|
31.
|
Wan, B*,2024. Is there Paleoproterozoic eclogite facie rock in Alxa along the northern margin of the North China Craton? Precambrian Research, 410.
|
30. |
万博*,吴福元和朱日祥, 2023. 特提斯演化对地球环境演变的影响. 中国科学: 地球科学. v.53: 2687-2700 |
29. |
Yan, S.,Wan, B*.and Andersson, U.B., 2023. Hydrothermal circulation at 1.8 Ga in the Kiruna area, northern Sweden, as revealed by apatite geochemical systematics (IOA) deposit and the region. Precambrian Research: v.395,107151. |
28. |
Yan, S.,Wan, B*.and Andersson, U.B., 2023. Apatite age and composition: A key to the geological history of the Malmberget Iron-Oxide-Apatite (IOA) deposit and the region. Journal of Geochemical Exploration: v252,107267. |
27. |
Wan, B*.,Chu, Y., Chen, L., Zhang, Z., Ao, S. and Talebian, M., 2022. When and Why the Neo-Tethys subduction initiation along the Eurasian margin: a case study from a Jurassic eclogite in southern Iran, in Catlos, E. J., and Cemen, I., eds., Tectonic Processes: a Global View Volume Volume II. Compressional Tectonics: Plate Convergence to Mountain Building: AGU/Wiley. (邀稿) |
26. |
万博,2022, 板块构造启动时间的争议、进展与思考: 科学通报, v67,3849-3860(Wan, B, 2022, Onset of plate tectonics: controversies, progresses and prospects: Chinese Science Bulletin, v67,3849-3860 (邀稿) |
25. |
Wan, B.*Chu, Y., Chen, L., Liang, XF, Zhang ZY, Ao, SJ, Talebian, M, 2021, Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: Evidence from an Iranian segment of Gondwana, Earth-Science Reviews, 221. 103788 |
24. |
Wan, B.*,Wang, X., Cai, K., Liu, X., Xiao, W.J., Mitchell R.N. 2021 Long-lived seamount subduction in ancient orogens: Evidence from the Paleozoic South Tianshan, Geology, v. 49., doi: 10.1130/G48547.1 |
23. |
Wan, B.*,Yang, X.S., Tian, X.B.*, Yuan, H.Y., Kirscher, U., Mitchell R.N.* 2020, Seismological evidence for the earliest global subduction network at 2 Ga ago: Science Advances, v.6,10.1126/sciadv.abc5491 |
22. |
Liu, Y., Xue, D., Li, W, Li, C.Wan, B.*2020, A simple method for the precise determination of multi-elements in pyrite and magnetite by ICP-MS and ICP-OES with matrix removal: Microchemical Journal, 105221 |
21. |
Dong, L.,Wan, B.*,Deng, C., and Cai, K. 2020, Mineral chemistry and sources of fluid and sulfur at the Katbasu gold deposit in South Tianshan, NW China: Ore Geology Reviews, v.116. 123224. |
20. |
Zang, Z., Dong, L., Liu, W., Zhao, H., Wang, X., Cai, K., andWan, B.*,2019, Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system: Scientific Reports, v. 9, p. 10382. doi: 10.1038/s41598-019-46868-4 |
19. |
Liu, Y.,Wan, B.*and Xue, D., 2019. Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks. Molecules, v.24, doi:10.3390/molecules24091778 |
18. |
Wan, B.*,Wu, F.-Y., Chen, L., Zhao, L., Liang, X., Xiao, W., and Zhu, R., 2019, Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics: SCIENCE CHINA Earth Sciences, v.62: p.2005-2016 /万博,吴福元,陈凌,赵亮,梁晓峰,肖文交,朱日祥, 2019重力驱动的特提斯单向裂解-聚合动力学. 中国科学地:球科科学,v.49, p.2004-2017 |
17. |
Wan, B.*, Li, S., Xiao, W., and Windley, B. F., 2018 Where and when did the Paleo-Asian ocean form?: Precambrian Research, v.317, p.241-252. |
16. |
Wan, B.*, Deng, C, Najafi, A, Hezarehd, M., Talebian, M. Dong, L., Chen, L., Xiao, W., 2018, Fertilizing porphyry Cu deposits through deep crustal hot zone melting: Gondwana Research, , v.60, p.179-185. |
15. |
Deng, C.,Wan, B.*, Dong, L., Talebian, M., Windley, B. F., Dadashzadeh, H., Mohammadi, B., and Barati, B., 2018, Miocene porphyry copper deposits in the Eastern Tethyan orogenic belt: Using Sr, O isotopes and Sr/Y ratios to predict the source of ore-related and ore-barren magmas: Gondwana Research, v.60, p.179-185. |
14. |
Dong, L.,Wan, B.*, Yang, W., Deng, C., Chen, Z., Yang, L., Cai, K., and Xiao, W., 2018, Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan, China and its geological significance: Ore Geology Reviews, v.100, p.99-110. |
13. |
Dong, L.,Wan, B.*, Deng, C., Cai, K., and Xiao, W., 2018, An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology: Journal of Asian Earth Sciences, v.153, p.412-424. |
12. |
Wan, B.*, Xiao, W., Windley, B. F., Gao, J., Zhang, L., and Cai, K., 2017, Contrasting ore styles and their role in understanding the evolution of the Altaids: Ore Geology Reviews, v. 80, p. 910-922. (邀稿) |
11. |
Wan, B.*, Windley, B. F., Xiao, W., Feng, J., and Zhang, J. e., 2015, Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent: Nature communications, v. 6, p. 8344. |
10. |
Wan, B.*, Xiao, W., Han, C., Windley, B. F., Zhang, L., Qu, W., and Du, A., 2014, Re–Os molybdenite age of the Cu–Mo skarn ore deposit at Suoerkuduke in East Junggar, NW China and its geological significance: Ore Geology Reviews, v. 56, p. 541-548. |
9. |
Wan, B.*, Xiao, W., Windley, B. F., and Yuan, C., 2013, Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume: Lithosphere, v. 5, no. 3, p. 290-299. |
8. |
Wan, B.*, Xiao, W., Zhang, L., and Han, C., 2012, Iron mineralization associated with a major strike–slip shear zone: radiometric and oxygen isotope evidence from the Mengku deposit, NW China: Ore Geology Reviews, v. 44, p. 136-147. |
7. |
Wan, B.*, Xiao, W., Zhang, L., Windley, B. F., Han, C., and Quinn, C. D., 2011, Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: implications for the accretionary history of the southern Altaids: Journal of the Geological Society, v. 168, no. 6, p. 1311-1321. |
6. |
Wan, B.*, Zhang, L., and Xiang, P., 2010, The Ashele VMS‐type Cu‐Zn Deposit in Xinjiang, NW China Formed in a Rifted Arc Setting: Resource Geology, v. 60, no. 2, p. 150-164. |
5. |
Wan, B.*, Zhang, L., and Xiao, W., 2010, Geological and geochemical characteristics and ore genesis of the Keketale VMS Pb–Zn deposit, Southern Altai Metallogenic Belt, NW China: Ore Geology Reviews, v. 37, no. 2, p. 114-126. |
4. |
Wan, B.*, Hegner, E., Zhang, L., Rocholl, A., Chen, Z., Wu, H., and Chen, F., 2009, Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites: Economic Geology, v. 104, no. 3, p. 351-363. |
3. |
万博*, 张连昌, 徐兴旺, 孙赫, 2006, 东天山小石头泉铜多金属矿区火山岩-次火山岩地球化学与成矿构造背景': 岩石学报, v. 22, no. 11. |
2. |
万博*, 张连昌, 2006, 新疆阿尔泰东南缘卡拉先格尔铜矿带含矿斑岩地球化学及其成矿意义: 中国地质, v. 33, no. 3, p. 618-625. |
1. |
万博*, 张连昌, 2006, 新疆阿尔泰南缘泥盆纪多金属成矿带 Sr-Nd-Pb 同位素地球化学与构造背景探讨: 岩石学报, v. 22, no. 1, p. 145-152. |
|
|
合作作者同行评议论文: |
2024 |
120.
|
Li, T., Zhao, L., Zhao, R., Murdie, R.E., Gessner, K., Xu, X., Wang, K.,Wan, B.,Ventosa, S. and Yuan, H., 2024. A crustal radially anisotropic shear-wave velocity model of Northwestern Australia. Precambrian Research, 410: 107457. |
119.
|
Zhao, X., Wang, X.-J., Jia, X., Evans, N.J., Yi, C., Chen, L.-H., Hanyu, T., Li, J.,Wan, B.,Zhu, X. and Zhang, H., 2023. Titanium isotopic fractionation during alkaline magma differentiation at St. Helena Island. Contributions to Mineralogy and Petrology, 179(1). |
118.
|
Liu, K., Xiao, W., Wilde, S.A., Liu, J., Zhang, J.,Wan, B.,Ao, S. and Xu, M., 2024. Arc Magmatism Controlled by Switches in Tectonic Style: Insights from the NE Asian Margin in the Cretaceous. Geophysical Research Letters, 51(2). |
117.
|
Xu, M., Xiao, W., Liu, K.,Wan, B.,Mitchell, R.N., Rosenbaum, G. and Wang, H., 2024. Subduction erosion revealed by exhumed lower arc crustal rocks in an accretionary complex, northeastern China. Geology, 52(6): 400-404. |
116.
|
Liu, Y.H., Guo, S., Li, W.J., Xue, D.S., Li, C.F. andWan, B.,2024. Rapid and Complete Digestion of Refractory Geological Samples Using Ultrafine Powder for Accurate Analyses of Trace Elements. Anal Chem, 96(17): 6523-6527. |
115. |
Wang, C., Xie, S., Zhang, X., Tong, X., Bai, Y., Peng, Z., Dong, Z., Zhang, L. andWan, B.,2024. Deciphering the source of banded iron formations in the North China Craton. Precambrian Research, 402: 107298. |
114. |
Liu, T., Liu, C.-Z., Wu, F.-Y., Topuz, G.,Wan, B.,Wang, J.-M. and Chen, G., 2024. Detachment Fault-Hosted Subduction Re-Initiation of the (Ultra)Slow-Spreading Western Neo-Tethys in the Jurassic. Geochemistry, Geophysics, Geosystems, 25(2): e2023GC011173. |
113. |
朱日祥, 王红军, 王华建, 王晓梅,万博,张旺, 祝厚勤, 柳宇柯, 刘俊来, 孟庆任, 郝芳, 金之钧, 2024. 东南亚多岛海构造体系圈层相互作用与油气富集机理. 中国科学: 地球科学, 54(2): 587-603. |
112. |
Jiang, L., A. Shen, Z. Qiao, A. Hu, Z. Xu, H. Zhang,B. Wan,and C. Cai (2024), Hypogenic karstic cavities formed by tectonic-driven fluid mixing in the Ordovician carbonates from the Tarim Basin, northwestern China, AAPG Bulletin, 108(1), 159-178, doi:10.1306/08022321011. |
111.
|
Yang, X., X. Tian,B. Wan,H. Yuan, L. Zhao, and W. Xiao (2024), Impact of Ancient Tectonics on Intracontinental Deformation Partitioning: Insights From Crustal Structures of the East Junggar-Altai Area, Journal of Geophysical Research: Solid Earth, 129(3), e2023JB027949, |
110. |
Liu, Wei,Wan, B,2024. Carbon flux from hydrothermal skarn ore deposits and its potential impact to the environment. Gondwana Research. 10.1016/j.gr.2023.09.017 |
|
2023 |
109. |
Liang, X., Chu, Y.,Wan, B.,Chen, L., Chen, L., Sandvol, E., Grand, S.P., Li, Y., Wang, M., Tian, X., Chen, Y., Xu, T., Li, Y. and Ji, W.-Q., 2023. Fragmentation of continental subduction is ending the Himalayan orogeny. Science Bulletin. /10.1016/j.scib.2023.10.017 |
108. |
Li, T., Jiang, M., Zhao, L., Chu, Y., Yao, W.,Wan, B.,Chen, L., Ai, Y., Bodin, T. and Yuan, H., 2023. Continental Fragments in the South China Block: Constraints From Crustal Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 128(10). |
107. |
Yuan, J., Deng, C., Yang, Z., Krijgsman, W., Thubtantsering, Qin, H., Yi, L., Zhao, P.,Wan, B.,Zhao, L., He, H., Guo, Z. and Zhu, R., 2023. New paleomagnetic data from the central Tethyan Himalaya refine the size of Greater India during the Campanian. Earth and Planetary Science Letters, 622. |
106. |
Song, DF., Mitchell, R, Xiao, W., Mao, Q.,Wan, B.Ao, SJ, 2023. Andean-type orogenic plateau as a trigger for aridification in the arcs of northeast Pangaea. Communications Earth & Environment, 3. 10.1038/s43247-023-00976-2 |
105. |
姜禾禾, 王佳敏,万博.2023. 国际岩矿地球化学固碳技术研究进展. 第四纪研究3: 494-508. doi: 10.11928/j.issn.1001-7410.2023.02.17 |
104. |
Hwang, J., Park, J.-W.,Wan, B.and Honarmand, M., 2023. Contrasting platinum-group element geochemistry of post-collisional porphyry Cu ± Au ore-bearing and barren suites in the central and southeastern Urumieh-Dokhtar magmatic arc, Iran. Mineralium Deposita. 10.1007/s00126-023-01195-7. |
103. |
Wang, G., Tian, X., Li, Y., Xu, T.,Wan, B.,Chen, Y., Nie, S., Yang, X., Zuo, S. and Zhang, J., 2023. Indian plate blocked by the thickened Eurasian crust in the middle of the continental collision zone of southern Tibet. Earthquake Research Advances: 100233. |
102. |
Zhang, Z., Zack, T., Kohn, B., Malusà, M.G., Wu, L., Rezaeian, M., Wang, N., Xiang, D., Guo, C., Esmaeili, R.,Wan, B.and Xiao, W., 2023. From Tethyan subduction to Arabia-Eurasia continental collision: Multiple geo-thermochronological signals from granitoids in NW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, v621, 111567. |
101. |
Nie, S., Tian, X., Liang, X. andWan, B.,2023. Less-Well-Developed Crustal Channel-Flow in the Central Tibetan Plateau Revealed by Receiver Function and Surface Wave Joint Inversion. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB025747. |
100. |
丁巍伟, 朱日祥,万博,赵亮, 牛雄伟, 赵盼, 孙宝璐 赵阳慧, 2023. 新特提斯洋东南段动力过程及东南亚环形俯冲体系形成机制. 中国科学地球科学, 53(4): 687-701. |
99. |
朱日祥, 张水昌,万博,张旺, 李勇, 王华建, 罗贝维, 柳宇柯, 何治亮 and 金之钧, 2023. 新特提斯域演化对波斯湾超级含油气盆地形成的影响. 石油勘探与开发, 50: 1-11. |
|
2022 |
98. |
Ma, Y., Wang, Q., Wang, H.,Wan, B.,Zhang, S., Deng, C., Zheng, D., Ren, Q., Yang, T., Wu, D., Zou, D., Wang, J., Liu, X., Kang, Z., Dan, W., Han, F. and Dekkers, M.J., 2022. Jurassic Paleomagnetism of the Lhasa Terrane – Implications for Tethys Evolution and True Polar Wander. Journal of Geophysical Research: Solid Earth,2022JB025577. |
97. |
刘威,万博,晏圣超. 2022. 矽卡岩化作用排碳到大气中的途径. 岩石学报, 38(5): 1557-1563. |
96. |
Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li, R., Gao, L., Guo, Y., Gan, J., Liu, Y. andWan, B.,2022. Final closure of the Paleo Asian Ocean basin in the early Triassic. Communications Earth & Environment, 3(1). |
95. |
Deng, C., Jenner, F.E.,Wan, B.,Kunz, B.E. and Bullock, E.S., 2022. Effects of mantle flow on the chemistry of Coriolis Troughs backarc magmas. Chemical Geology: 121116. |
94. |
Wang, X., Chen, L., Talebian, M., Ai, Y., Jiang, M., Yao, H., He, Y., Ghods, A., Sobouti, F.,Wan, B.,Chu, Y., Hou, G., Chen, Q.F., Chung, S.L., Xiao, W., Wu, F.Y. and Zhu, R., 2022. Shallow Crustal Response to Arabia‐Eurasia Convergence in Northwestern Iran: Constraints From Multifrequency P‐Wave Receiver Functions. Journal of Geophysical Research: Solid Earth, 127(9). |
93. |
Yang, S., Liang, X., Jiang, M., Chen, L., He, Y., Thet Mon, C., Hou, G., Thant, M., Sein, K. andWan, B.,2022. Slab remnants beneath the Myanmar terrane evidencing double subduction of the Neo-Tethyan Ocean. Science Advances, 8(34). 10.1126/sciadv.abo1027 |
92. |
Yan, Z., Chen, L., Zuza, A, Tang, J.,Wan, B.and Xu, H., 2022. The fate of oceanic plateaus: subduction versus accretiong. Geophysical Journal International, 10.1093/gji/ggac266 |
91. |
Zhang, Y.-B.,Wan, B.,Wu, F.-Y., Zhai, M.-G., Wang, T., Zhang, X.-H., Li, Q.-L., Peng, P., and Hou, Q.-L., 2022, Late Cretaceous-early Paleogene magmatism in the Gyeongsang basin, southeast Korea and its implications for middle Paleogene climate change: Journal of Asian Earth Sciences, p. 105346. |
90. |
Li, T., Jiang, M., Zhao, L., Yao, W., Chen, L., Chu, Y., Sun, B., Ai, Y.,Wan, B.,Gessner, K., and Yuan, H., 2022, Wedge tectonics in South China: constraints from new seismic data: Science Bulletin. |
89. |
Wang, H., Cai, K., Sun, M., Xia, X.-P., Lai, C.-K., Li, P.,Wan, B.and Zhang, Z., 2022. Apatite as a magma redox indicator and its application in metallogenic research. Lithos, 422-423. |
88. |
Wang, K., Cai, K., Sun, M., Wang, X., Xia, X.P., Zhang, B. andWan, B.,2022. Diapir Melting of Subducted Mélange Generating Alkaline Arc Magmatism and Its Implications for Material Recycling at Subduction Zone Settings. Geophysical Research Letters, 49(10). 10.1029/2021gl097693 |
87. |
Xue, D.-S., Tian, H.-C., Zhang, D.-P., Liu, Y.-H., Sun, J.-F., Wu, S.-T., Liu, S.-K., Guo, S. andWan, B.,2022. Quantitative verification of 1:35 diluted fused glass disks with 10 mg sample sizes for the wavelength-dispersive X-ray fluorescence analysis of the whole-rock major elements of precious geological specimens. Spectrochimica Acta Part B: Atomic Spectroscopy, 193. 106433 |
86. |
Yuan, J., Deng, C., Yang, Z., Krijgsman, W., Thubtantsering, Qin, H., Shen, Z., Hou, Y., Zhang, S., Yu, Z., Zhao, P., Zhao, L.,Wan, B.,He, H. and Guo, Z., 2022. Triple-stage India-Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision. Global and Planetary Change, 212. |
85. |
Deng, C., Jenner, F.E.,Wan, B.and Li, J.L., 2022. The Influence of Ridge Subduction on the Geochemistry of Vanuatu Arc Magmas. Journal of Geophysical Research: Solid Earth, 127. e2021JB022833. |
84. |
Zhao, L., Tyler, I.M., Gorczyk, W., Murdie, R.E., Gessner, K., Lu, Y., Smithies, H., Li, T., Yang, J., Zhan, A.,Wan, B.,Sun, B. and Yuan, H., 2022. Seismic evidence of two cryptic sutures in Northwestern Australia: Implications for the style of subduction during the Paleoproterozoic assembly of Columbia. Earth and Planetary Science Letters, 579: 117342. |
|
2021 |
83. |
Salih, M.O.,Wan, B.and Lentz, D.R., 2021. Geochemistry and petrogenesis of anorogenic REE-bearing peralkaline granitoids from Northern Sudan. Neues Jahrbuch für Mineralogie - Abhandlungen, 197(2): 185-208. |
82. |
Wang, H., Cai, K., Sun, M., Wang, Y., Lai, C.-K.,Wan, B.and Zhang, Z., 2021. Magma evolution and Cu-Au mineralization potential of the Upper Devonian-Lower Carboniferous Tulasu basin, Western Tianshan Orogen (NW China): Apatite U-Pb dating and geochemical perspectives. Ore Geology Reviews, 139: 104526. |
81. |
Espeche, M.J.,Wan, B.,Lira, R. and Seltmann, R., 2021. Mineral chemistry and U-Pb garnet geochronology of strongly reduced tungsten skarns at the Pampa de Olaen mining district, Córdoba, Argentina. Ore Geology Reviews: 104379. |
80. |
Chu, Y., Allen, M.B.,Wan, B.,Chen, L., Lin, W., Talebian, M., Wu, L., Xin, G. and Feng, Z., 2021. Tectonic exhumation across the Talesh-Alborz Belt, Iran, and its implication to the Arabia-Eurasia convergence. Earth-Science Reviews, 221. 103776 |
79. |
Chu, Y.,Wan, B.,Allen, M.B., Chen, L., Lin, W., Talebian, M. and Xin, G., 2021. Detrital zircon age constraints on the evolution of Paleo-Tethys in NE Iran: implications for subduction and collision tectonics. Tectonics, e2020TC006680. |
78. |
Mao, Q., Ao, S., Windley, B.F., Zhang, Z., Song, D., Zhang, J.e.,Wan, B.,Tan, W., Han, C. and Xiao, W., 2021. Petrogenesis of Late Carboniferous-Early Permian mafic-ultramafic-felsic complexes in the eastern Central Tianshan, NW China: The result of subduction-related transtension? Gondwana Research, v95, 10.1016/j.gr.2021.03.007 |
77. |
Ao, S., Mao, Q., Windley, B.F., Song, D., Zhang, Z., Zhang, J.e.,Wan, B.,Han, C. and Xiao, W., 2021. The youngest matrix of 234 Ma of the Kanguer accretionary mélange containing blocks of N-MORB basalts: constraints on the northward subduction of the Paleo-Asian Kanguer Ocean in the Eastern Tianshan of the Southern Altaids. International Journal of Earth Sciences, v110, p.791-808. |
76. |
Yan, Z., Chen, L., Xiong, X.,Wan, B.and Xu, H., 2021. Oceanic Plateau and Subduction Zone Jump: Two‐Dimensional Thermo‐Mechanical Modeling. Journal of Geophysical Research: Solid Earth, 126. |
75. |
Esmaeili, R., Ao, S., Shafaii Moghadam, H., Zhang, Z., Griffin, W.L., Ebrahimi, M., Xiao, W.,Wan, B.and Bhandari, S., 2021. Amphibolites from makran accretionary complex record Permian-Triassic Neo-Tethyan evolution. International Geology Review: 1-17. |
74. |
Hansman, R.J., Ring, U., Scharf, A., Glodny, J. andWan, B.,2021. Structural architecture and Late Cretaceous exhumation history of the Saih Hatat Dome (Oman), a review based on existing data and semi-restorable cross-sections. Earth-Science Reviews, v 217, 10.1016/j.earscirev.2021.103595 |
73. |
Yang, S., Li, Z.H.,Wan, B.,Chen, L. and Kaus, B.J.P., 2021. Subduction‐Induced Back‐Arc Extension Versus Far‐Field Stretching: Contrasting Modes for Continental Marginal Break‐Up. Geochemistry, Geophysics, Geosystems, v 22, 10.1029/2020gc009416 |
72. |
Lu, G., Zhao, L., Chen, L.,Wan, B.and Wu, F., 2021. Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth? Earth and Planetary Physics, v5, p1-18. |
71. |
Ao, S., Mao, Q., Khalatbari-Jafari, M., Windley, B. F., Song, D., Zhang, Z., Zhang, J. e.,Wan, B.,Han, C., and Xiao, W., U–Pb age, Hf–O isotopes, and geochemistry of the Sardasht ophiolite in the NW Zagros orogen: Implications for the tectonic evolution of Neo-Tethys: Geological Journal, v56, p.1315-1329 |
70. |
Sun, M., Cai, K., Sun, M.,Wan, B.,Wang, X., and Bao, Z., 2020, Devonian arc-related granitoids in the Northwestern Chinese Tianshan, Central Asian Orogenic Belt: implications for the bending of the Kazakhstan Orocline: International Geology Review, v63, doi:10.1080/00206814.2020.1737975 |
|
|
2020 |
69. |
Zhang, D.P., Xue, D.S., Liu, Y.H.,Wan, B.,Guo, Q., and Guo, J.J., 2020, Comparative Study of Three Mixing Methods in Fusion Technique for Determining Major and Minor Elements Using Wavelength Dispersive X-ray Fluorescence Spectroscopy: Sensors, v. 20, doi:10.3390/s20185325 |
68. |
Han, C., Xiao, W., Su, B., Asamoah Sakyi, P., Ao, S., Zhang, J.,Wan, B.,Song, D., Zhang, Z., Wang, Z., and Xie, M., 2020, Age and tectonic setting of the Jingangku Besshi-type volcanogenic massive sulfide deposit from the Northern Shanxi, North China Craton: Precambrian Research, v. 350, p. 105873 |
67. |
Han, C., Xiao, W., Su, B., Asamoah Sakyi, P., Ao, S., Zhang, J.,Wan, B.,Song, D., Zhang, Z., Wang, Z., and Xie, M., 2020, Late Paleozoic metallogenesis and evolution of the Chinese Western Tianshan Collage, NW China, Central Asia orogenic belt: Ore Geology Reviews, v. 124, p. 103643, doi:10.1016/j.oregeorev.2020.103643 |
66. |
Liu, Y., Wang, Z., Xue, D., Yang, Y., Li, W., Cheng, H., Patten, C., andWan, B.,2020, An Improved Analytical Protocol for the Determination of Sub-nanogram Gold in 1–2 g Rock Samples Using GFAAS after Polyurethane Foam Pretreatment: Atomic Spectroscopy, v.41, 131-140, doi: 10.46770/AS.2020.03.006 |
65. |
吴福元,万博, 赵亮, 肖文交, 朱日祥. 特提斯地球动力学, 岩石学报, 36, p.1627-1674 |
64. |
Li, TZ, Zhao, L.,Wan, B.,Li, Z.X., Bodin, T., Wang, K., Yuan, H.Y. 2020. New Crustal Vs model along an array in south-east China: Seismic Characters and paleo-Tethys continental amalgamation, Geochemistry, Geophysics, Geosystems, doi: 10.1029/2020GC009024 |
63. |
Song, SH, Xiao, W.J*, Windley, B.F., Collins, A.S., Chen Y.C, Zhang, Je, Schulmann, K. Han, C.M.,Wan, B.,Ao, SJ., Zhang, Z.Y., Song, D.F., Li, R. 2020, Late Paleozoic Chingiz and Saur arc amalgamation in West Junggar (NW China): implications for accretionary tectonics in the southern Altaids, Tectonics, doi: 10.1029/2019TC00578 |
62. |
Esmaeili, R., Xiao, W., Griffin, W. L., Moghadam, H. S., Zhang, Z., Ebrahimi, M., Zhang, J.,Wan, B.,Ao, S., and Bhandari, S., 2020, Reconstructing the source and growth of the Makran Accretionary Complex: Constraints from detrital zircon U‐Pb geochronology: Tectonics, doi:10.1029/2019tc005963 |
61. |
陈凌, 王旭, 梁晓峰,万博, 和刘丽军. 2020. 俯冲构造 vs. 地幔柱构造–板块运动驱动力探讨. 中国科学: 地球科学, doi:10.1360/SSTe-2019-0106. |
60. |
Tan, Z., Agard, P., Gao, J., Hong, T. andWan, B.2020. Concordant pulse in Mn, Y and HREEs concentrations during UHP eclogitic garnet growth: Transient rock dynamics along a cold subduction plate interface. Earth and Planetary Science Letters, v. 115908. |
|
2019 |
59. |
肖文交, 宋东方, Windley, B, 李继亮, 韩春明,万博, 张继恩, 敖松坚, 张志勇. 2019.中亚增生造山过程与成矿作用研究进展. 中国科学: 地球科学 49, 1512-1545, doi: 10.1360/SSTe-2019-0133. |
58. |
Esmaeili, R., Xiao, W., Ebrahimi, M., Zhang, J. E., Zhang, Z., Abd El-Rahman, Y., Han, C.,Wan, B.,Ao, S., Song, D., Shahabi, S., and Aouizerat, A., 2019, Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction: International Geology Review, p. 1-21. |
57. |
Tan, Z., Agard, P., Monié, P., Gao, J., John, T., Bayet, L., Jiang, T., Wang, X.-S., Hong, T.,Wan, B.,and Caron, B., 2019, Architecture and P-T-deformation-time evolution of the Chinese SW-Tianshan HP/UHP complex: Implications for subduction dynamics: Earth-Science Reviews, v. 197, doi: 10.1016/j.earscirev.2019.102894 |
56. |
Liu, X., Liu, W., Xiao, W. andWan, B.,2019. Magma replenishment as revealed by textural and geochemical features of plagioclase phenocrysts in subduction-related lavas. Acta Geologica Sinica - English Edition, v.93, p.464-476. |
55. |
高俊,朱明田,王信水,洪涛,李光明,李继磊,肖文交,秦克章,曾庆栋,申萍,徐兴旺,张招崇,周建波,赖勇,张晓晖,孙景贵,万博,王博, 2019,中亚成矿域斑岩大规模成矿特征: 大地构造背景, 流体作用与成矿深部动力学机制. 地质学报, v.93, p.24-71. |
|
2018 |
54. |
Han, C., Xiao, W. Su, B., Sakyi, PA., Ao, S., Zhang, J., Zhang, Z.,Wan, B., Song, D., 2018, Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW china, Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v.165, p.270-284. |
53. |
Su, W., Cai, K., Sun, M.,Wan, B., Wang, X., Bao, Z., and Xiao, W., 2018. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance: Lithos, v.310-311, p. 241-254. |
52. |
Zhang, Z., Xiao, W., Ji, W., Majidifard, M., Talebian, M., Rezaeian, M., Xiang, D., Chen, L.,Wan, B., Ao, S, Esmaeili, R., 2018, Geochemistry, zircon U-Pb and Hf isotope for the granitoids from the NW Sanandaj-Sirjan zone, Iran: implications for Mesozoic-Cenozoic episodic magmatism during Neo-Tethyan lithospheric subduction: Gondwana Research, v.62, p.227-245. |
51. |
Chen, H.,Wan, B., Pirajno, F., Chen, Y., and Xiao, B., 2018, Metallogenesis of the Xinjiang Orogens, NW China-New Discoveries and Ore Genesis: Ore Geology Reviews, v.100, p.1-11. |
50. |
Gao, J., Klemd, R., Zhu, M., Wang, X., Li, J.,Wan, B., Xiao, W., Zeng, Q., Shen, P., and Sun, J., 2017, Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review: Journal of Asian Earth Sciences,dio:org/10.1016/j.jseaes.2017.10.002. |
49. |
Wang, Y., Cai, K., Sun, M., Xiao, W., De Grave, J.,Wan, B., and Bao, Z., 2017, Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt: Ore Geology Reviews, v.100, p.111-132.. |
48. |
Xiao, W., Windley, B. F., Han, C., Liu, W.,Wan, B., Zhang, J. e., Ao, S., Zhang, Z., and Song, D., 2017, Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia: Earth-Science Reviews, dio:10.1016/j.earscirev.2017.09.020. |
47. |
Han, C., Xiao, W., Su, B., Sakyi, P. A., Ao, S., Zhang, J.,Wan, B., Song, D., and Wang, Z., 2016, Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China: Ore Geology Reviews, dio:10.1016/j.oregeorev.2016.07.011. |
46. |
Bao, Z., Cai, K., Sun, M., Xiao, W.,Wan, B., Wang, Y., Wang, X., and Xia, X., 2018, Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China: Journal of Asian Earth Sciences, v. 153, p. 100-117. |
45. |
Nabatian, G., Li, X.-H.,Wan, B., and Honarmand, M., 2017, The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz magmatic belt, Iran: Mineralogy and Petrology, v.112, p.481-500. |
44. |
Wang, X., Cai, K., Sun, M., Xiao, W., Xia, X.,Wan, B., Bao, Z., and Wang, Y., 2018, Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis: Journal of Asian Earth Sciences, v.153, p.118-138. |
|
2017 |
43. |
Nabatian, G.,Wan, B., and Honarmand, M., 2017, Whole rock geochemistry, molybdenite Re-Os geochronology, stable isotope and fluid inclusion investigations of the Siah-Kamar deposit, western Alborz-Azarbayjan: New constrains on the porphyry Mo deposit in Iran: Ore Geology Reviews, v. 91, p. 638-659. |
42. |
Xiao, W., Ao, S., Yang, L., Han, C.,Wan, B., Zhang, J. E., Zhang, Z., Li, R., Chen, Z., and Song, S., 2017, Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision: Science China Earth Sciences, v. 60, no. 6, p. 1015-1039. |
41. |
Luo, J., Xiao, W., Wakabayashi, J., Han, C., Zhang, J. e.,Wan, B., Ao, S., Zhang, Z., Tian, Z., and Song, D., 2017, The Zhaheba ophiolite complex in Eastern Junggar (NW China): long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids: Gondwana Research, v. 43, p. 17-40. |
40. |
Han, C., Xiao, W., Su, B., Sakyi, P. A., Ao, S., Zhang, J.,Wan, B., Song, D., Zhang, Z., and Wang, Z., 2017, Neoarchean Algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen: SIMS U-Pb age, origin and tectonic setting: Precambrian Research, v. 303, p. 548-572. |
39. |
Zhang, Z., Xiao, W., Majidifard, M. R., Zhu, R.,Wan, B., Ao, S., Chen, L., Rezaeian, M., and Esmaeili, R., 2017, Detrital zircon provenance analysis in the Zagros Orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys: International Journal of Earth Sciences, v. 106, no. 4, p. 1223-1238. |
38. |
Yamini, M. A., Tutti, F., Yamini, M. R. A., Ahmadian, J., andWan, B., 2017, Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses: Mineralogy and Petrology, v. 111, no. 5, p. 747-759. |
|
2016 |
37. |
Cai, K., Sun, M., Buslov, M., Jahn, B.-m., Xiao, W., Long, X., Chen, H.,Wan, B., Chen, M., and Rubanova, E., 2016, Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB): Tectonophysics, v. 674, p. 182-194. |
36. |
Ao, S., Xiao, W., Jafari, M. K., Talebian, M., Chen, L.,Wan, B., Ji, W., and Zhang, Z., 2016, U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys: Gondwana Research, v. 31, p. 305-318. |
|
2015 |
35. |
Tian, Z., Xiao, W., Sun, J., Windley, B. F., Glen, R., Han, C., Zhang, Z., Zhang, J. e.,Wan, B., and Ao, S., 2015, Triassic deformation of Permian Early Triassic arc-related sediments in the Beishan (NW China): last pulse of the accretionary orogenesis in the southernmost Altaids: Tectonophysics, v. 662, p. 363-384. |
|
2014 |
34. |
Han, C., Xiao, W., Su, B.-X., Sakyi, P. A., Chen, Z., Zhang, X., Ao, S., Zhang, J.,Wan, B., and Zhang, Z., 2014, Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U–Pb dating: Precambrian Research, v. 254, p. 306-322. |
33. |
Xiao, W., Han, C., Liu, W.,Wan, B., Zhang, J. e., Ao, S., Zhang, Z., Song, D., Tian, Z., and Luo, J., 2014, How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China)?: Geoscience Frontiers, v. 5, no. 4, p. 525-536. |
32. |
Han, C., Xiao, W., Su, B., Chen, Z., Zhang, X., Ao, S., Zhang, J., Zhang, Z.,Wan, B., and Song, D., 2014, Neoarchean Algoma-type banded iron formations from Eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting: Precambrian Research, v. 251, p. 212-231. |
31. |
Han, C., Xiao, W., Zhao, G., Su, B., Sakyi, P. A., Ao, S.,Wan, B., Zhang, J. e., Zhang, Z., and Wang, Z., 2014, Mid-late Paleozoic metallogenesis and evolution of the Chinese Altai and East Junggar orogenic belt, NW China, Central Asia: Journal of Geosciences, v. 59, no. 3, p. 255-274. |
30. |
Han, C., Xiao, W., Zhao, G., Su, B., Ao, S., Zhang, J.,Wan, B., Wang, Z., Ding, J., and Qu, W., 2014, Re–Os isotopic age of the Hongqiling Cu–Ni sulfide deposit in Jilin Province, NE China and its geological significance: Resource Geology, v. 64, no. 3, p. 247-261. |
29. |
Tian, Z., Xiao, W., Windley, B. F., Lin, L. n., Han, C., Zhang, J. e.,Wan, B., Ao, S., Song, D., and Feng, J., 2014, Structure, age, and tectonic development of the Huoshishan–Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids: Gondwana Research, v. 25, no. 2, p. 820-841. |
28. |
Han, C., Xiao, W., Zhao, G., Su, B., Ao, S., Zhang, J., Zhang, Z.,Wan, B., and Wang, Z., 2014, Tectonic implications of Re-Os dating of molybdenum deposits in the Tianshan–Xingmeng Orogenic Belt, Central Asia: International Geology Review, v. 56, no. 8, p. 985-1006. |
27. |
Lin, L. n., Xiao, W.,Wan, B., Windley, B. F., Ao, S., Han, C., Feng, J., Zhang, J. e., and Zhang, Z., 2014, Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids: American Journal of Science, v. 314, no. 2, p. 679-703. |
26. |
Han, C., Wu, F., Xiao, W., Zhao, G., Ao, S., Zhang, J.,Wan, B., Qu, W., and Du, A., 2014, The Paleoproterozoic Chibaisong Mafic-Ultramafic Intrusion and Cu-Ni Deposit, North China Craton: SHRIMP Zircon U-Pband Re-Os Geochronology and Geodynamic Implications: Journal of Geophysics and Remote Sensing, v. 3, no.1, p. 651-657. |
25. |
Wang, Z.-M., Han, C.-M., Xiao, W.-J.,Wan, B., Sakyi, P. A., Ao, S.-J., Zhang, J.-E., and Song, D.-F., 2014, Petrology and geochronology of Paleoproterozoic garnet-bearing amphibolites from the Dunhuang Block, Eastern Tarim Craton: Precambrian Research, v. 255, p. 163-180. |
24. |
Wu, H., Zhang, L., Pirajno, F., Xiang, P.,Wan, B., Chen, Z., and Zhang, X., 2014, The Jiguanshan porphyry Mo deposit in the Xilamulun metallogenic belt, northern " ">23.Feng, J., Xiao, W., Windley, B., Han, C.,Wan, B., Zhang, J. e., Ao, S., Zhang, Z., and Lin, L., 2013, Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: implications for Late Permian accretionary tectonics in the southern Altaids: Journal of Asian Earth Sciences, v. 78, p. 114-142. |
|
2013 |
22. |
Han, C., Xiao, W., Zhao, G., Su, B.-X., Sakyi, P. A., Ao, S.,Wan, B., Zhang, J. e., and Zhang, Z., 2013, SIMS U-Pb zircon dating and Re-Os isotopic analysis of the Hulu Cu-Ni deposit, eastern Tianshan, Central Asian Orogenic Belt, and its geological significance: Journal of Geosciences, v. 58, no. 3, p. 251-270. |
21. |
Han, C., Xiao, W., Zhao, G., Su, B., Ao, S., Zhang, J. e., andWan, B., 2013, Age and tectonic setting of magmatic sulfide Cu-Ni mineralization in the Eastern Tianshan Orogenic Belt, Xinjiang, Central Asia: Journal of GEOsciences, v. 58, no. 3, p. 233-250. |
20. |
Han, Z., Han, C., Xiao, W., Zhao, G., Wang, Z., Ao, S., Zhang, J., andWan, B., 2013, Palaeozoic porphyry Cu–Au and ultramafic Cu–Ni deposits in the eastern Tianshan orogenic belt: temporal constraints from U–Pb geochronology: International Geology Review, v. 55, no. 7, p. 842-862. |
19. |
焦守涛, 颜丹平, 张旗, 李承东,万博, 田忠华, 2013, 八达岭花岗岩的年龄, 地球化学特征及其地质意义: 岩石学报, v. 29, no. 3, p. 769-780. |
|
2011 |
18. |
Wu, H., Zhang, L.,Wan, B., Chen, Z., Xiang, P., Pirajno, F., Du, A., and Qu, W., 2011, Re–Os and 40 Ar/39 Ar ages of the Jiguanshan porphyry Mo deposit, Xilamulun metallogenic belt, NE China, and constraints on mineralization events: Mineralium Deposita, v. 46, no. 2, p. 171-185. |
17. |
Wu, H., Zhang, L.,Wan, B., Chen, Z., Zhang, X., and Xiang, P., 2011, Geochronological and geochemical constraints on Aolunhua porphyry Mo–Cu deposit, northeast China, and its tectonic significance: Ore Geology Reviews, v. 43, no. 1, p. 78-91. |
16. |
Chen, Z., Zhang, L.,Wan, B., Wu, H., and Cleven, N., 2011, Geochronology and geochemistry of the Wunugetushan porphyry Cu–Mo deposit in NE China, and their geological significance: Ore Geology Reviews, v. 43, no. 1, p. 92-105. |
15. |
Zhang, X., Zhang, L., Xiang, P.,Wan, B., and Pirajno, F., 2011, Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: constraints on the ore-forming age and tectonic setting: Gondwana Research, v. 20, no. 1, p. 137-148. |
|
2010 |
14. |
Wang, Q., Shu, L. S., Charvet, J., Faure, M., Ma, H., Natal'In, B., Gao, J., Kroner, A., Xiao, W., and Liu, J., Winley, B., Chen, Y., Glen, R., Jian, P., Zhang, W., Seltmann, R., Wile, S., Choulet, F.,Wan, B., Quinn, C., Agramonte, Y., Shang, Q., Zhang, W., Wang, B., Lin, W.,2010, Understanding and study perspectives on tectonic evolution and crustal structure of the Paleozoic Chinese Tianshan: Episodes Journal of International Geoscience, v. 33, no. 4, p. 242-266. |
13. |
郭谦谦, 潘成泽, 肖文交, 曲军峰, 敖松坚, 张继恩, 宋东方, 田中华,万博, 韩春明, 2010, 哈密延东铜矿床地质和地球化学特征:新疆地质,v. 28, no. 4, p. 419-426. |
12. |
张连昌, 吴华英, 相鹏, 张晓静, 陈志广,万博, 2010, 中生代复杂构造体系的成矿过程与成矿作用——以华北大陆北缘西拉木伦钼铜多金属成矿带为例: 岩石学报, v. 26, no. 5, p. 1351-1362. |
11. |
吴华英, 张连昌, 陈志广,万博, 相鹏, 张晓静, 2010, 西拉木伦多金属成矿带鸡冠山斑岩钼矿富氟高盐度高氧逸度流体包裹体研究: 岩石学报, v. 26, no. 5, p. 1363-1374. |
|
2009 |
10. |
相鹏, 张连昌, 吴华英, 张晓静, 陈志广,万博, 2009, 新疆青河卡拉先格尔铜矿带 Ⅱ-Ⅲ 矿区含矿斑岩锆石年龄及地质意义: 岩石学报, no. 6, p. 1474-1483. |
9. |
Zhang, L.-c., Wu, H.-y.,Wan, B., and Chen, Z.-g., 2009, Ages and geodynamic settings of Xilamulun Mo–Cu metallogenic belt in the northern part of the North China Craton: Gondwana Research, v. 16, no. 2, p. 243-254. |
|
2008 |
8. |
Zhang, L.-c., Zhou, X.-h., Ying, J.-f., Wang, F., Guo, F.,Wan, B., and Chen, Z.-g., 2008, Geochemistry and Sr–Nd–Pb–Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: Implications for their origin and mantle source characteristics: Chemical Geology, v. 256, p. 12-23. |
7. |
陈志广, 张连昌,万博, 张玉涛, 吴华英, 2008, 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb 型成矿斑岩地球化学特征及地质意义. 岩石学报, v.24, p.115-128. |
6. |
陈志广, 张连昌, 吴华英,万博, 曾庆栋, 2008, 内蒙古西拉木伦成矿带碾子沟钼矿区 A 型花岗岩地球化学和构造背景: 岩石学报, v. 24, p. 879-889. |
5. |
吴华英, 张连昌, 陈志广,万博, 2008, 内蒙古西拉木伦成矿带库里吐钼 (铜) 矿区二长花岗岩地球化学, 构造环境及含矿性分析:岩石学报,v.24, p. 867-878 |
|
2006 |
4. |
张连昌, 夏斌, 牛贺才, 李文铅, 方维萱, 唐红峰,万博, 2006, 新疆晚古生代大陆边缘成矿系统与成矿区带初步探讨: 岩石学报, v. 22, no. 5, p. 1387-1398. |
3. |
陈志广, 张连昌, 周新华,万博, 英基丰, 王非, 2006, 满洲里新右旗火山岩剖面年代学和地球化学特征: 岩石学报, v. 22, no. 12, p. 2971-2986. |
2. |
张连昌,万博, 李文铅, 唐红峰, 2006, 新疆吐哈盆地南缘铜矿带含矿斑岩的地球化学及形成环境: 岩石学报, v. 22, no. 1, p. 225-235. |
1. |
张连昌,万博, 焦学军, 张锐, 2006, 西准包古图含铜斑岩的埃达克岩特征及其地质意义,中国地质, v. 33, no. 3, p. 626-631. | |
|
|