
An efficient step-length formula for correlative
least-squares reverse time migration

Youshan Liu1, Jiwen Teng1, Tao Xu2, Zhiming Bai1, Haiqiang Lan1, and José Badal3

ABSTRACT

In correlative least-squares reverse time migration
(CLSRTM), the estimation of the optimal step size is usually
determined by fitting a parabola and finding its minimum; it
involves at least two times extra reading of all seismic re-
cords, which significantly lowers the efficiency of the algo-
rithm. To improve the efficiency of the CLSRTM algorithm,
we have deduced an analytical step-length (ASL) formula
based on the linear property of the demigration operator.
Numerical examples performed with the data synthetized
by the Marmousi and Sigsbee2A models were used to test
its validity. In complex models with imperfect migration
velocity, such as the Sigabee2A model, our formula makes
the value of the objective function converges to a much
smaller minimum. Additional numerical tests performed
with the data either acquired irregularly or contaminated
by different noise levels verify the robustness of the ASL
formula. Compared with the commonly used parabolic
search method, the ASL formula is much more efficient be-
cause it is free from an extra estimation of the value of the
objective function.

INTRODUCTION

In seismic exploration, data migration has been playing an im-
portant role in imaging the subsurface structures of the earth. Con-
ventional imaging methods are based on prestack depth migration:
from Kirchhoff migration (Schneider, 1978) and Beam migration
(Hill, 1990, 2001) to one-way wave-equation migration (Claerbout,
1971; Claerbout and Doherty, 1972; Gazdag, 1978; Stoffa et al.,

1990; Huang and Fehler, 1998) and reverse time migration (RTM)
(Hemon, 1978; Baysal et al., 1983; McMechan, 1983; Whitmore,
1983; Liu et al., 2011; Lan et al., 2014), each migration procedure
uses an extrapolation operator to adapt to complicated subsurface
structures. Nowadays, RTM is recognized as the state-of-the-art of
imaging technology to seek increasingly complicated subsurface
structures. However, in practice, the above conventional depth
imaging methods cannot achieve a perfect image because of
irrgular data sampling, aliased seismic data, and uneven subsurface
illumination from acquisition geometry (Etgen et al., 2009; Wong
et al., 2015).
To remove the data acquisition footprint and improve the image

quality, the imaging problem can be posed as a linear inverse prob-
lem. This inversion-based imaging method is also widely known as
least-squares migration (LSM) (Lambaré et al., 1992; Nemeth et al.,
1999) or linearized wavefield inversion (Tarantola, 1984; Clapp,
2005; Valenciano, 2008). LSM was originally proposed in Kirch-
hoff migration (Schuster, 1993; Nemeth et al., 1999; Duquet et al.,
2000), and then it was introduced into one-way wave-equation mi-
gration (Gazdag, 1978; Kuehl and Sacchi, 1999, 2001) and applied
to RTM (Tang, 2009; Dai et al., 2011, 2012; Wong et al., 2011,
2015; Dong et al., 2012). The idea behind conventional LSM is that
it generates simulated data to perfectly match the amplitude of the
observed seismic data.
In general, conventional LSM can boost the signal for the true

reflector, balance the relative amplitude, and suppress noise. How-
ever, various factors hamper it when applied to field data. On the
one hand, the earth is viscoelastic or even anisotropic. The acoustic-
wave equation is not adequately accurate to model the propagation
of seismic waves across earth structures. On the other hand, the
source strength may vary from experiment to experiment, and an
accurate estimation of the source strength is not always possible.
Consequently, it is difficult to effectively match the amplitude.
Thus, conventional (i.e., amplitude-matching-based) least-squares
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RTM (LSRTM) faces huge challenges when applied to field seismic
data. Zhang et al. (2015) propose a new general framework for
LSRTM, which they call correlative LSRTM (hereafter CLSRTM).
CLSRTM is able to generate a high-resolution image through min-
imizing the negative crosscorrelation coefficient of the simulated
and observed data at zero lag. It relaxes the amplitude matching
and uses phase information to measure the closeness between simu-
lated and observed seismic data. Even if differences in amplitude
between the simulated and observed seismic data exist, the involved
objective function value is unchanged (Zhang et al., 2015). Thus,
differences in amplitude have a smaller contribution than phase
differences. Therefore, CLSRTM has good performance and is re-
vealed as a useful and stable tool to work with field seismic data
(Zhang et al., 2015).
Although Zhang et al. (2015) construct a complete framework for

CLSRTM, they do not give an efficient step-length formula in their
flowchart for inversion. For gradient-based inversion methods, only
if the descent direction is scaled by a proper scalar (i.e., a step
length) will the value of the objective function decrease iteratively.
In this paper, we derive an analytical step-length (ASL) formula for
CLSRTM based on the linear characteristic of the demigration op-
erator. Compared with the commonly used linear search method,
such as the parabolic search method (PSM) (Vigh et al., 2009), this
new step-length formula involves little computational overhead be-
cause the optimal step length can be incidentally calculated during
the data predicition process (demigration). In contrast, the PSM in-
volves at least twice as much reading of the simulated, perturbed,
and observed seismic records of all shots to estimate the objec-
tive function value, which degrades the efficiency of CLSRTM
algorithm.
In this study, first, we review the migration and demigration op-

erators of CLSRTM. Then, we analytically derive a step-length
formula based on the linear property of the demigration operator.
After that, we present two numerical examples with noise-free
data to demonstrate the effectiveness of the ASL when compared
with the commonly used PSM. Last, we adopt CLSRTM with
PSM and ASL to migrate irregularly acquired data to verify the
robustness of ASL. In addition, we also add different noise levels
into the data to check the robustness of the proposed procedure
further.

THEORY

In LSM, the data are migrated (migration) and the resulting re-
flectivity image is used to generate simulated data (demigration).
These simulated data are substracted from the field data, and the
residuals are migrated to correct for the estimated reflectivty
model at each iteration. Therefore, a typical LSM scheme involves
two core parts, namely, the migration and demigration processes.
The former computes the gradient of the cost function with respect
to reflectivity (or stacked image), and the latter computes the pre-
dicted data using the reflectivity (or stacked image). Once the
gradient of the cost function and the initial stacked image are
available, one can iteratively update the stacked image to reduce
migration artifacts and to obtain a more balanced amplitude. For
completeness, we briefly review the theoretical background of
CLSRTM. The detailed algorithm can be seen in Zhang et al.
(2015) and Figure 1.

Correlative LSRTM

In 2015, Zhang et al. (2015) construct the following crosscorre-
lation-based objective function to overcome the problem of imper-
fect amplitude-matching characteristic in the conventional LSRTM
(i.e., the L2 norm objective function). The crosscorrelation-based
objective function can be written as

EðrðxÞÞ¼−
Z Z R

dðxr;tjxsÞ ·Dðxr;tjxsÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d2ðxr;tjxsÞdt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
D2ðxr;tjxsÞdt

q dxrdxs;

(1)

where rðxÞ is the stacked image at position x rather than physical
angle-dependent reflectivity; the middle dot denotes the inner prod-
uct of the observed and simulated seismic records at each receiver;
dðxr; tjxsÞ is the simulated or predicted data at the time instant t and
the receiver xr, which is excited by a source located at position xs;
Dðxr; tjxsÞ is the observed data at the time instant t and the receiver
xr, which is excited by a source located at position xs. The negative
sign on right side means that the negative crosscorrelation coeffi-
cient between the observed and simulated data will be minimized.
In the best-case scenario, in which the two data sets are identical or
with a constant scaling difference, the objective function value
reaches its minimum −1 (Zhang et al., 2015). Mathematically, this
LSM can be ascribed to obtain the solution of the optimization
problem 1. Many methods can be adopted to solve it. Although
Monte Carlo-based inversion methods tend to search for a global
optimal solution, they are rarely used for seismic inversion in
modern computing architecture due to the huge and unaffordable
computing cost. At present, the gradient-based optimization meth-
ods are generally recognized as more practical choices.
In this paper, we adopt the limited-memory Broyden-Fletcher-

Goldfarb-Shannon (L-BFGS) method as our inversion method (No-
cedal, 1980). Using the L-BFGS method, the descent direction can
be approximated as

δri ¼ −Bigi; (2)

where Bi is the approximate inverse Hessian matrix, gi is the gra-
dient of the objective function, δri is the descent direction, and i is
the iteration index. The product of the approximated or quasi-in-
verse Hessian matrix and the gradient can be calculated using a res-
curive formula with information from the last m iterations, where m
is any number supplied by the user. The application details can be
seen in Nocedal (1980). At each iteration, we use the following ini-
tial inverse Hessian matrix given by Nocedal (1980)

B0
i ¼ sTi yi∕yTi yi; (3)

where ri is the stacked image, si ¼ ri − ri−1 is the stacked image
change, and yi ¼ gi − gi−1 is the gradient change. In all the following
experiments, the number of the stored y and s for corrections used in
the L-BFGS is set to 10. Usually, an effective descent direction gen-
erated by the L-BFGS method must be well-behaved, which is en-
sured by using the Wolfe linear search (Wu et al., 2015). Here, we
also consider this special case. In this case, we use the negative gra-
dient as the descent direction when the sufficient descent condition
gTi δri < 0 is not satisfied (where superscript T means the transpose
operator; Hu andWang, 2014). In this case, the L-BFGSmethod fails
to generate an effective descent direction to decrease the objective
function value (i.e., a nonpositive definite Hessian matrix).
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In relation to this optimization method, we need the gradient (mi-
gration process) of the objective function to update the initial stacked
image and need the simulated data (demigration process) to compute
the value of the objective function at each iteration. In the following
subsections, we briefly review the migration and demigration oper-
ators of CLSRTM. After, an ASL formula is deduced based on the
linear characteristic of the demigration operator.

Reverse time migration

RTM is an advanced migration tool and is suitable to use as a
migration engine in LSM. Zhang et al. (2015) use the following
RTM operator MT :

8><
>:

�
1

v2ðxÞ
∂2
∂t2 − ∇2

�
psðx; tjxsÞ ¼ δðx − xsÞfðtÞ;�

1
v2ðxÞ

∂2
∂t2 − ∇2

�
prðx; tjxsÞ ¼ − ∂

∂tΔdðxr; tjxsÞδðx − xrÞ;
(4)

where vðxÞ is the velocity of the medium at position x, psðx; tjxsÞ is
the forward-propagated source wavefield, prðx; tjxsÞ is the back-
ward-propagated receiver wavefield, δ is the Dirac-delta function,
∇2 is the Laplacian operator, and fðtÞ is the source signature. The
reweighted residual between the rescaled simulated data and ob-
served data Δdðxr; tjxsÞ is expressed as

a) b)

Figure 1. Flowcharts for the implementation of CLSRTM with the (a) PSM and (b) ASL; Bi is the approximate inverse Hessian matrix; gi is
the gradient; δri is the descent direction; δdi is perturbed data; di is the simulated data; i is the iteration index, its maximum value is taken as
100; fi is the value of objective function at the current iteration; ft1 and ft2 are the first and second trial objective function values, respectively;
αi is the step length at the current iteration; αt1 and αt2 are the step lengths used to estimate the first and second trial objective function values,
respectively; dt1 and dt2 are the updated data with the trial step lengths, respectively; n1 and n2 are the iteration indexes of the first and second
trial estimation; and N is the maximum iteration number of the first and second trial estimation.
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Δdðxr; tjxsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiR

d2dt
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

D2dt
q

�R
d · DdtR
d2dt

d − D
�
; (5)

where d denotes the predicted or simulated data and D is the ob-
served data. Here, ð∫ d · Ddt∕∫ d2dtÞ × d represents the rescaled si-
mulated data to correct the differences in amplitude between the
observed and simulated data. The weight before the square brackets
aims to remove the amplitude strength effects from the observed and
predicted data.
The migrated image can be produced by applying the following

imaging condition:

rðxÞ ¼
ZZ

psðx; tjxsÞprðx; tjxsÞdtdxs: (6)

In CLSRTM, the computation of the gradient (equation 4) is used
to update the stacked image (equation 6) to obtain a stacked image
with higher resolution and balanced amplitude. This process is ac-
complished by RTM with data residuals (equation 5), but the first
iteration of CLSRTM is equivalent to RTM. Therefore, RTM plays
the role of the “engine” in the inversion of CLSRTM. Then, the
simulated data are computed with the updated-stacked image.
The fitness between the observed and simulated data measures
whether the model can well interpret the observed data. Corre-
spondingly, a data prediction process, i.e., reverse time demigration
(RTDM), is naturally involved in CLSRTM.

Reverse time demigration

RTDM is a powerful tool to predict seismic data from the stacked
image r obtained with CLSRTM. Zhang et al. (2015) use the fol-
lowing RTDM operator M:

8>>>><
>>>>:

�
1

v2ðxÞ
∂2
∂t2 − ∇2

�
psðx; tjxsÞ ¼ δðx − xsÞfðtÞ;�

1
v2ðxÞ

∂2
∂t2 − ∇2

�
prðx; tjxsÞ ¼ rðxÞ ∂

∂t psðx; tjxsÞ;
dðxr; tjxsÞ ¼ prðxr; tjxsÞ.

(7)

Theoretically, the migration operator (4) and the demigration op-
erator (7) form an exact adjoint operator pair in the time-domain
extrapolation. Zhang et al. (2015) analytically prove that this adjoint
operator pair satisfies the dot-product test that an exact adjoint op-
erator pair should obey.
The adjoint of a linear operator is its complex-conjugated trans-

pose. In the time domain, the operator is real-valued and the adjoint
is the transpose of the forward modeling operator (Ji, 2009). An
analytically exact adjoint operator pair is just a theoretical presup-
position. To ensure that the adjoint pair is numerically exact, as
pointed by Ji (2009), a correct implementation of the transpose op-
erator must be applied in the extrapolation of the backward-propa-
gated receiver wavfields. Instead of using wavefields from the two
previous time steps together for one time-step extrapolation, the ex-
act adjoint operator uses the wavefields of the two previous time
steps separately (Ji, 2009). Althougth a correct implementation
of exact adjoint pair can drive the objective function value to con-
verge to a smaller minimum (the Figure 8 of Ji, 2009), in this paper,
we still use the identical wavefield extrapolator for the source and

receiver wavefields as in most of the RTM-related papers. Never-
theless, this never impedes us from verifying the effectiveness of
our proposed ASL in the following subsection, because we use a
completely identical algorithms except for different step-length
formulas.
In all experiments, we adopt a central finite-difference stencil of the

16th order of accuracy in space and the second-order of accuracy in
time to extrapolate the source wavefield (equation 4) and the receiver
wavefield (equation 7). The second-order acoustic wave equation is
solved and a second-order PML boundary conditions (Liu et al.,
2012) are applied to four edges to suppress spurious reflections from
the artificial boundaries. Because the source and receiver wavefields
should be synchronously available at the same time step, the source
wavefield is either saved on disk or recomputed at each time instant.
In this paper, the source wavefield history is reconstructed in the re-
verse time direction by storing the wavefileds history at PMLs with
the thickness of a half-number of the finite-difference stencil as the
boundary condition and by storing wavefields at the last two slices as
initial condition (Dussaud et al., 2008; Liu et al., 2015; Nguyen and
McMechan, 2015). In addition, at each iteration, we adopt a Lapla-
cian filter as a preconditioner to remove low-frequency artifacts
throughout all experiments (Pratt, 1978; Youn and Zhou, 2001; Guit-
ton and Kaelin, 2006; Zhang and James, 2009).

ASL formula

As is well-known, the gradient-based optimization methods al-
ways need a step length to scale the gradient of the objective func-
tion, which ensures that the objective function value will be reduced
iteratively. Here, we derive an ASL formula for CLSRTM based on
the linear characteristic of the RTDM operator.
At the current state (i.e., stacked image r at ith iteration), by ap-

plying the Taylor series expansion of α to the second order, the ob-
jective function one can be approximated as follows:

Eðrþ αδrÞ ≈ EðrÞ þ α
∂Eðrþ αδrÞ

∂α

				
α¼0

þ α2

2

∂2Eðrþ αδrÞ
∂α2

				
α¼0

¼ cþ bαþ aα2; (8)

where α is the optimal step length. After comparing the terms of the
right sides of the last expressions, we can obtain the following re-
lationships: 8>>>><

>>>>:

c ¼ EðrÞ;
b ¼ ∂EðrþαδrÞ

∂α

			
α¼0

;

a ¼ 1
2

∂2EðrþαδrÞ
∂α2

			
α¼0

.

(9)

If the value of the objective function approaches a local or global
minimum, expression 8 satisfies the following condition:

∂
∂α

Eðrþ αδrÞ ¼ 0: (10)

Substituting the relationship 9 into the formula 10, we obtain the
general form of the optimal step-length formula:
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αopt ¼ −
b
2a

¼ −
∂EðrþαδrÞ

∂α

			
α¼0

∂2EðrþαδrÞ
∂α2

			
α¼0

: (11)

After derivation (see Appendix A), the specific form of the optimal
step-length formula can be written as follows:

αopt ¼ −
b
2a

; (12)

where (omitting ðx; tjxsÞ for clarity)

a ¼ 1

2

ZZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

D2dt
q ffiffiffiffiffiffiffiffiffiffiffiffiffiR

d2dt
q

�
2

R
d · δddtR
d2dt

Z
δd · Ddt

þ
R ðδdÞ2dtR

d2dt

Z
d · Ddt

− 3

�R
d · δddtR
d2dt

�
2
Z

d · Ddt
�
dxrdxs (13)

and

b ¼
ZZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
D2dt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiR
d2dt

q

×
�R

d · Ddt
R
d · δddtR

d2dt
−
Z

δd · Ddt
�
dxrdxs: (14)

To verify the effectiveness of our ASL, we make a comparative
study with the PSM. Figure 1 shows the flowcharts for the detailed
implementation of CLSRTM with the PSM (Figure 1a) and ASL
(Figure 1b). Compared with the latter, the former needs to update
the simulated data by a trial step length (highlighted by the dotted
line rectangle in Figure 1a) at least two times, which involves extra
I/O and computational operations among the simulated, perturbed,
and observed data of all shots. Consequently, it degrades the effi-
ciency of CLSRTM algorithm. In this study, in terms of the PSM,
the maximum estimation of the objective function value is set to 10
(at each iteration). The first trial step length should obey the condi-
tion: the maximum updated value of the stacked image is less than
1% of the migrated image, i.e., maxðjαtδrjiÞ ≤ 0.01 maxðjrijÞ (Pica
et al., 1990).

NUMERICAL EXAMPLES

To demonstrate the effectiveness of the ASL for CLSRTM versus
the PSM, we develop two synthetic examples and compare the re-
sults. First, the Marmousi and Sigabee2A models are adopted to
verify the validity and efficiency of the ASL. Then, the data ac-
quired irregularly and also with different noise levels are migrated
to verify its robustness.
In all experiments, we give an adequate maximum number of

iterations (i.e., 100) and the identical stopping criterion. The inver-
sion process will exit if the objective function value increases or the
number of iterations reaches its maximum value or the relative
change of the objective function value is less than 0.0002. Besides,
the implementation algorithms of CLSRTMwith the PSM and ASL
are identical, except different step-length formulas.

Marmousi model

The Marmousi consists of 1151 × 376 grid cells in the horizontal
and vertical directions, respectively. The horizontal and vertical grid
spacing is 10 m. The synthetic data acquired from 58 shots sepa-
rated by an interval of 200 m are used as shot gathers, which are
generated by a Ricker wavelet with a dominant frequency of 20 Hz
at a depth of 50 m. Consequently, the maximum frequency of the
seismic source is 60 Hz (for a Ricker wavelet, typically fmax ¼ 3f0,
where f0 is the dominant frequency). The sampling interval is
0.8 ms, and the recording length is 4 s. The first shot locates at
the sixth grid cell. At most, 356 receivers are deployed at both sides
with split-spread acquisition geometry to record each shot. The sep-
aration of receivers is 10 m. The minimum and maximum offsets are
0 and 3560 m, respectively. The number of receivers on either left
side or right side of some shotpoints is less than 356 when the shot
location is close to two ends of the model. In such cases, the receiver
arrangement on either the left side or the right side is truncated by
the end of the model. Figure 2a shows the model used to synthetize
the observed data, whereas Figure 2b shows a Gaussian smoothed
version of the Marmousi velocity model as our migration velocity
model. In Figure 2a, the gray pentagram denotes the location of the
29th shot. Two gray triangles denote the first and last receivers of
the 29th shot experiment, respectively.
Figure 3 shows the migrated images for the Marmousi model.

The acronym on the top left corner of each image refers to the in-
version method used for computation. The numbers in parentheses
represent the corresponding iteration numbers. The RTM image
(i.e., the image at the first iteration) is shown in Figure 3a. The in-
verted images after nine iterations using CLSRTM with the PSM
and ASL are shown in Figure 3b and 3c, respectively. Black colors
represent positive values, whereas white colors represent negative
values. Compared with the initial RTM image (Figure 3a), the im-
ages obtained with the PSM (Figure 3b) and ASL (Figure 3c) show
more balanced amplitude (as can be appreciated in the small area
enclosed by dotted line ellipses in Figure 3a) and overall high
resolution. In the bottom left corner, the resolution has been signifi-
cantly improved as the number of iterations increases. In addition,
the top/bottom boundaries of the oil/gas cap beneath the anticline
become sharper.
To compare the resolution of the migrated results, Figure 4a–4c

shows the wavenumber spectra of the migrated images presented in
Figure 3a–3c, respectively. To improve the visualization of these
wavenumber spectra, the range of the wavenumber axes are reduced
from 0.05 (in the original plot) to 0.025. Compared with the wave-
number spectrum of the initial RTM image (Figure 4a), both the
wavenumber spectra of the images after nine iterations with the
PSM (Figure 4b) and ASL (Figure 4c) clearly contain higher wave-
number components, especially along the kz-axis, which further
proves that Figure 3b and 3c obtains higher resolution than
Figure 3a.
Figure 5 shows common shot gathers of the 29th shot with direct

waves muted. Figure 5a shows the synthetic (or observed) data us-
ing the Marmousi velocity model (Figure 2a), and Figure 5b shows
the simulated data using the initial stacked image r0. Figure 5c and
5d shows the simulated data after nine iterations using CLSRTM
with the PSM and ASL, respectively. The numbers in parentheses
represent corresponding iteration numbers. At more iterations,
CLSRTM gradually makes the simulated data approach the syn-
thetic or observed data. As can be seen in the shot records supplied
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shot, and two gray triangles denote the first and
last receivers of the 29th shot experiment.
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by the PSM and ASL, reconstructed data match very well with the
synthetic shot record. Although some events are weak and discon-
tinuous on the initial simulated data (indicated by arrows) due to the
limited acquisition aperture and imperfect migration operator, the
simulated data become more continuous and balanced with the in-
crease in the number of iterations. These results demonstrate that the
ASL for CLSRTM is valid when compared with the conven-
tional PSM.
The crosscorrelation coefficients at receivers of the 29th common

shot are also plotted in Figure 6. The numbers in parentheses re-

present the corresponding iteration numbers. At the two ends of
the receiver arrangement of the 29th shot, the crosscorrelation co-
efficient of the simulated data with the initial RTM image (red line)
is significantly lower than that in the middle part. At a higher num-
ber of iterations, the crosscorrelation coefficient increases. In par-
ticular, the crosscorrelation coefficient at the two ends becomes
more balanced after nine iterations. The crosscorrelation profiles
after nine iterations with the PSM (solid blue line) and ASL (dashed
green line) are almost identical, which further verifies that the mi-
grated images after nine iterations can better interpret the observed
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Figure 4. Wavenumber spectra of migrated im-
ages of the Marmousi model. (a) The wavenumber
spectrum of the initial RTM image. (b) The wave-
number spectrum of the inverted image after nine
iterations using CLSRTM with the PSM. (c) The
wavenumber spectrum of the inverted image after
nine iterations using CLSRTM with the ASL. To
improve the visualization of the wavenumber
spectra, the range of the wavenumber axes was re-
duced from 0.05 (in the original plot) to 0.025 (as
can be seen here). Compared to the initial RTM
image, the inverted images using CLSRTM with
the PSM and ASL generate increased amplitude
at a higher wavenumber.
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Figure 5. Common shot records of the 29th shot
(direct waves are muted) in the case of the Mar-
mousi model. (a) Synthetic data, (b) initial simu-
lated data, (c) simulated data after nine iterations
using CLSRTM with the PSM, and (d) simulated
data after nine iterations using CLSRTM with the
ASL.
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data than the initial RTM image and verifies the effectiveness of
the ASL.
The objective function values E versus the number of iterations

with the PSM (solid line) and ASL (dotted line) are shown in Fig-
ure 7. It can be seen that in the two cases, these values converge to
approximately −0.87 and they decrease very rapidly after the first
three iterations. Besides, the final convergence value of the objec-
tive function using the ASL is slightly smaller than that of the PSM.

Sigsbee2A model

In the exploration community, the subsalt imaging problem is al-
ways one of the most challenging topics due to the poor illumination
beneath salt bodies. Liu et al. (2011) use multiples to provide better
subsalt images because the different propagation wavepaths of multi-
ples can complement the illuminations where the primary reflections
beneath the salt are not acquired. Because LSM can boost up the true
reflector and improve the image quality, we use the challenging Sigs-
bee2A model (Paffenholz et al., 2002) to check the imaging ability
and the effectiveness of ASL for CLSRTM.
The model we used is a modified version of the released Sigs-

bee2A model. To save computational amount, we mute the top 120
water layers in the released Sigsbee2A model, and the model is
sparsely resampled in the x- and z-directions by a factor of two.
The stratigraphy and migration velocity models are shown in Fig-
ure 8. The modified Sigsbee2A model consists of 1601 and 481 grid
cells in the x- and z-directions, respectively. The grid spacing in the
x- and z-axes is reset to 10 m. The synthetic data acquired from 80
shots separated by an interval of 200 m are used as shot gathers,
which are generated by a Ricker wavelet with dominant frequency
of 20 Hz at the depth of 50 m. Consequently, the maximum fre-
quency of the seismic source is 60 Hz. The sampling interval is
1 ms, and the record length is 6 s. The first shot locates at the
10th grid cell. At most, 340 receivers are deployed at both sides
with split-spread acquisition geometry to record each shot. The sep-
aration of receivers is 10 m. The minimum and maximum offsets are
0 and 3400 m, respectively. When the location of shotpoint ap-
proaches to either end of the model, only one side has 340 receivers,
whereas another side is truncated by the end of the model.
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Figure 6. The crosscorrelation coefficients of the 29th shot in the
case of the Marmousi model. Solid red, solid blue, and dashed green
lines denote the crosscorrelation coefficients of the initial simulated
data, simulated data after nine iterations using CLSRTM with the
PSM, and simulated data after nine iterations using CLSRTM with
the ASL, respectively. The numbers in parentheses denote the cor-
responding iteration numbers. The crosscorrelation coefficients of
the simulated data after nine iterations using CLSRTM with the
PSM and ASL are approximately identical. The PSM and ASL
are better because the crosscorrelation coefficient is closer to one.
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In Figure 8a, the gray pentagram denotes the shot location of the
20th shot. In addition, two gray triangles denote the first and last
receivers of the 20th shot experiment, respectively.
The initial RTM image (the image at the first iteration) of the

Sigsbee2A model is shown in Figure 9a. Figure 9b is the inverted
image after 10 iterations using CLSRTM with the PSM, whereas
Figure 9c and 9d is the inverted images after 10 and 20 iterations
using CLSRTMwith the ASL, respectively. The acronym on the top
left corner of each image refers to the inversion method used for
computation. The numbers in parentheses represent the correspond-
ing iteration numbers. Black colors represent positive values,
whereas white colors represent negative values. As can be seen,

the stacked images are improved with much more balanced ampli-
tudes and high resolution when compared with the initial RTM im-
age. In particular, the amplitudes beneath subsalt areas (delimited
by rectangles in Figure 9) are enhanced by CLSRTM. However,
some artifacts still exist on migrated images (marked by arrows),
which may due to the imperfect migration velocity (Figure 8b).
It can be seen clearly that CLSRTM with the ASL at 10 iterations
(Figure 9c) generates much higher resolution image than the initial
RTM image (Figure 9a) and also fewer artifacts than CLSRTMwith
the PSM at 10 iterations (Figure 9b). At 20 iterations, the migration
artifacts for images constructed using CLSRTM with the ASL (Fig-
ure 9d) are further removed (see arrows in rectangles). These fea-
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Figure 9. Migrated images of the Sigsbee2A
model. (a) The initial RTM image using
CLSRTM. (b) The inverted image after 10 itera-
tions using CLSRTM with the PSM. (c and d)
The inverted imaged after 10 and 20 iterations us-
ing CLSRTM with the ASL, respectively. The
acronym on the top left corner of each image refers
to the inversion method used for computation. The
numbers in parentheses denote the corresponding
iteration numbers.
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tures support the validity of the proposed computational procedure
based on CLSRTM and the analytically determined step-length
formula.
Figure 10 is a zoomed view of the partial images delimited by

rectangles in Figure 9. Figure 10a–10d allows us to observe the sub-
salt image quality with CLSRTM. Compared with the correspond-
ing stratigraphy of the zoomed zone (Figure 10e), the stratum
structures are well-delineated. It is also appreciated that the artifacts
(see arrows on images) on the migrated image obtained using
CLSRTM with the ASL are weaker than those given by CLSRTM
with the PSM, which demonstrates that the ASL provides better
results than the PSM.
For the Sigsbee2A model, the salt reflection in migrated images

has very high amplitude. The wavenumber spectrum for the entire
model essentially represents the amplitude of the salt boundary. To
view an improvement in the resolution of the migrated images, we
only plot the wavenumber spectra of the zoomed zone instead of the
entire images (Figure 10). Figure 11a–11d shows the wavenumber
spectra of the migrated images plotted in Figure 10a–10d, respec-
tively. To improve the visualization of these wavenumber spectra,
the range of wavenumber axes are cut from the original 0.05 to
0.025. Figure 11a is the wavenumber spectrum of the initial
RTM image, and Figure 11b is the wavenumber spectrum of the
inverted image after 10 iterations using CLSRTM with the PSM,
and Figure 11c and 11d is the wavenumber spectra of the inverted
image after 10 and 20 iterations using CLSRTM with the ASL,
respectively. Compared with the wavenumber spectrum of the initial
RTM image (Figure 11a), the wavenumber spectra of the images
with the PSM (Figure 11b) and ASL (Figure 11c and 11d) clearly

contain higher wavenumber components. As before in the case of
the Marmousi model, it can be observed that the wavenumber spec-
tra of the images with the PSM and ASL exhibit wider wavenumber
range than that of the initial RTM image, which means that a much
better resolution is obtained with CLSRTM than that of RTM. Com-
pared with Figure 11c, the wavenumber range of the Figure 11d is
slightly wider, which demonstrates that a resolution improvement
has been obtained at more iterations.
The synthetic and simulated data acquired from the 20th shot

with direct waves muted in the cases of the Sigsbee2A model
are shown in Figure 12. Figure 12a shows the synthetic (or ob-
served) data, Figure 12b is the initial simulated data, Figure 12c
is the simulated data after 10 iterations using CLSRTM with the
PSM, and Figure 12d is the simulated data after 20 iterations using
CLSRTM with the ASL. Compared with the initial simulated data
generated using RTM image (Figure 12b), the simulated data ob-
tained with the inverted images (Figure 12c and 12d) match well
with the synthetic data (Figure 12a). Although some events are
weak on the initial simulated data (indicated by arrows in Fig-
ure 12b), the simulated data demigrated with the inverted results
demonstrate that CLSRTM with the ASL works well compared
with the conventional PSM even when using imperfect migration
velocity model (Figure 8b).
The crosscorrelation coefficients at receivers of the 20th shot are

shown in Figure 13. The numbers in parentheses denote the cor-
responding iteration numbers. In the right gray-filled area, the
quasi-horizontal strata are intruded by a high-velocity salt body
(see Figure 8a). In this salt-body-intruded area, the initial cross-
correlation coefficient is negative because of the very strong re-
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tom (e) shows the corresponding stratigraphy of
the reference zone. The annotation shows that
the ASL has a clearer image when compared with
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flection at salt boundaries. Generally, the crosscorrelation profile
obtained using the initial RTM image (red line) is remarkably
lower than those obtained using the migrated images with the
PSM (blue line) after 10 iterations and with the ASL (green line)
after 20 iterations. At more iterations, the crosscorrelation coeffi-
cient becomes more balanced and larger. In addition, the crosscor-
relation coefficient obtained by the ASL is slightly larger than that
obtained by the PSM, which illustrates that the ASL is more effi-
cient than the PSM.

The objective function values E versus the number of iterations
with the PSM (solid line) and ASL (dotted line) are shown in Fig-
ure 14. It can be seen that in the second case (ASL), these values
converge to a much smaller value. In particular, after the 10th iter-
ation, the objective function values with the ASL are clearly smaller
than those of the PSM, whereas the convergence curve of the PSM
becomes flat (meet the stopping criterion) and no longer decreases.
This further demonstrates that the ASL is very effective, and it can
drive the objective function value converges to a smaller minimum.
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Figure 12. Common shot records of the 20th shot
(direct waves are muted) in the case of the Sigs-
bee2A model. (a) Synthetic data, (b) initial simu-
lated data, (c) simulated data after 10 iterations
using CLSRTM with the PSM, and (d) simulated
data after 20 iterations using CLSRTM with the
ASL.
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number spectra of the inverted image after 10 and 20
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tively. To improve the visualization of the wavenum-
ber spectra, the range of the wavenumber axes was
reduced from 0.05 (in the original plot) to 0.025 (as
can be seen here). Compared with the initial RTM
image, the inverted images using CLSRTM with the
PSM and ASL generate increased amplitude at a
higher wavenumber.
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Robustness tests

In the above tests, the data are regularly acquired. In this subsec-
tion, we use the irregularly acquired data and the noisy data to check
the robustness of the ASL.

Irregularly acquired data

We randomly delete some seismic traces from the Marmousi data
set to simulate an irregularly acquired data set. Whether a trace is
deleted is determined by a pseudorandom number drawn from the
standard uniform distribution on the open interval (0, 1). This ran-
dom number varies from one trace to another. The seismic traces
will be deleted to simulate a missing trace wherever the random
number is greater than 0.9. The common shot records of the
29th shot is shown in Figure 15a (hereafter Marmousi-irregular),

whereas Figure 15b shows the miss rate for all 58 shots. Generally,
the miss rate range from 4% to 12%. The miss rate is slightly low
when the shotpoint is close to both ends of the model, whereas the
missing trace is approximate to 10% when the shotpoint is located
in the middle of the model.
The migrated images are shown in Figure 16. Figure 16a is the

initial RTM image; Figure 16b and 16c is the inverted images
after 10 iterations using CLSRTM with the PSM and ASL, respec-
tively. Black colors represent positive values, whereas white colors
represent negative values. Generally, much higher resolutions
(marked by arrows) and balanced amplitudes (enclosed by the dotted
line ellipses) are obtained using CLSRTMwith the PSM (Figure 16b)
and the ASL (Figure 16c) when compared to the initial RTM image
(Figure 16a). This illustrates the robustness of the ASL for irregular
acquisition geometry. However, some random artifacts at deeper
layers are obvious when compared with Figure 3, which may be
due to the inexact gradient caused by the missing seismic traces.

Tests with noisy data

In the previous examples, the data are free of noise. Unfortu-
nately, in real cases, the data are always contaminated by stochas-
tic and/or coherent noise. To verify the effectiveness of our
deduced step-length formula, different levels of Gaussian white
noise are added into the data set generated from the Marmousi
model to achieve the decreasing signal-to-noise ratio (S/N) of
40 and 20 dB, respectively. To purely investigate the robustness
of the ASL, an impractical high noise level (20 dB) is also
considered. Figure 17 shows common shot records of the 29th
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Figure 15. (a) Data acquired irregularly from the common shot re-
cords of the 29th shot in the case of the Marmousi model. (b) Miss
rate for all 58 shots.
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Figure 13. The crosscorrelation coefficients of the 20th shot in the
case of the Sigsbee2A model. Red, blue, and green lines denote the
crosscorrelation coefficients of the initial simulated data, simulated
data after 10 iterations using CLSRTM with the PSM, simulated
data after 20 iterations using CLSRTM with the ASL, respectively.
The numbers in parentheses denote the corresponding iteration
numbers. The PSM and ASL are better as the crosscorrelation co-
efficient is closer to one.
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Figure 14. Values of the objective function E versus the number of
iterations. The results make reference to the Sigsbee2A model and
CLSRTM, either with the PSM (solid line) or the ASL (dotted line).
After 10 iterations, the convergence curve of CLSRTM with the
PSM becomes flat and no longer decreases.
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shot with an S/N of 40 (Figure 17a) and 20 dB (Figure 17b).
Compared with Figure 17a, the amplitude of the data contami-
nated by 20 dB is larger. This illustrates that the amplitude of
noise is comparable with that of signal. Then, the noisy data
are migrated.
The migrated images from data with S/N of 40 (hereafter Mar-

mousi-40 dB) and 20 dB (hereafter Marmousi-20 dB) are shown in
Figures 18 and 19, respectively. Black colors represent positive val-
ues, whereas white colors represent negative values. The numbers in
parentheses denote corresponding iteration numbers. Figures 18a
and 19a shows the respective initial RTM images. In Figure 18b
and 18c, we present the migrated images after eight iterations using
the PSM and ASL with the data set shown in Figure 17a, respec-
tively. Analogously, in Figure 19b and 19c, we present the migrated
images after seven iterations using the PSM and ASL with the
data set shown in Figure 17b, respectively. The migrated images
(Figure 18) obtained using data shown in Figure 17a still have high
resolution and definition, whereas the migrated images in Figure 19
look smeared. It can be seen that migration artifacts become more
and more obvious (see the locations marked by arrows in Figure 19)
as the S/N decreases, which may be due to the inaccurate gradient
caused by severe noise. In deeper layers, the traveltime of seismic
events maybe is not correct because of the large cumulated error.

The number of iterations for CLSRTM to meet a predefined stop-
ping threshold decreases with the increase in the noise level, which
may be accounted for noise hampering the inversion to continue.
Although the seismic record with an S/N of 20 dB (Figure 13b)
hardly allows the identification of seismic events, the structures
of the Marmousi model are well-imaged and can be recognized with
a certain detail. This example proves that the ASL also works well
and is robust when using a data set with severe white Gaussian noise
contamination.

Computational efficiency

For the above numerical examples, we run the same code with
MPI but different versions of step-length formulas. On each node,
the number of CPU cores is six and the dominant frequency of CPU
is 2.4 GHz (Six-Core AMD Opteron™ Processor 2431). In all
cases, each CPU core deals with tasks of one shot. We allocate five
computing nodes for the Marmousi model and seven computing
nodes for the Sigsbee2A model. The stopping criteria are the same
for all numerical examples namely (1) the increase in the objective
function value, (2) or that the number of iterations reaches its maxi-
mum value, and (3) or that the relative change rate of the objective
function values is less than 0.0002. Thus, the differences in the
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Figure 16. Migrated images of the Marmousi model
with irregular acquisition geometry. Panel (a) shows
the initial RTM image by using the CLSRTM,
(b) the inverted image after 10 iterations using
CLSRTM with the PSM, and (c) the inverted image
after 10 iterations using CLSRTM with the ASL.
The acronym on the top left corner of each image
refers to the inversion method used for computation.
The numbers in parentheses denote the correspond-
ing iteration numbers.
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results are mainly due to the differences between the step-length
formula of the algorithms and not extraneous issues.
At each iteration, CLSRTM involves the migration (for gradient)

and demigration (for objective function) processes once, respec-
tively. Therefore, four times the modeling are required, i.e., model-
ing twice each for RTM and RTDM. For gradient-based CLSRTM,
an optimal step length is always necessary to iteratively decrease the
value of the objective function. To estimate this optimal step length,
the PSM always needs to read the simulated, perturbed, and ob-
served data of all shots, whereas, for the ASL, it is incidentally cal-
culated in the RTDM process. As is well-known, the I/O operations
are always slow especially for MPI communication, which signifi-
cantly degrades the efficiency of CLSRTM algorithm. Figure 20
shows the number of the extra estimations of the objective function
value for the PSM in the above experiments. This metric is inde-
pendent of hardware differences and implementations details. It is
also unbiased to evaluate the efficiency of both step-length formu-
las. In Figure 20, Marmousi and Sigsbee2A represent experiments
with the noise-free data; Marmousi-irregular represents the experi-
ment with the irregular acquisition geometry; Marmousi-40 dB and
Marmousi-20 dB indicate data sets with S/N of 40 and 20 dB, re-
spectively. It can be seen that the PSM needs several times extra
estimation of the objective function value in experiments with
noise-free data (Marmousi and Sigsbee2A), with irregularly ac-
quired data (Marmousi-irregular), and with noisy data (Mar-
mousi–40 dB and Marmousi–20 dB). Compared with the ASL,
the PSM is not always efficient due to at least twice reading of
the simulated, perturbed, and observed seismic records of all shots.
The detailed differences between CLSRTM with the PSM and ASL
are listed in Figure 1.

CONCLUSIONS

Based on the linear characteristic of the demigration operator, we
derive an ASL formula for CLSRTM. The validity of the ASL is
verified using the Marmousi and Sigsbee2A models. Numerical ex-
amples prove that the PSM is not effective, especially in complex
models with imperfect migration velocity (such as the Sigsbee2A
model test), whereas the ASL can make the value of the objective
function converges to a smaller minimum. Although some artifacts
are remained at deep layers in the test with the data acquired irregu-
larly, the PSM and ASL can obtain high-resolution and balanced
amplitude results. This experiment verifies the robustness of the
ASL for irregular acquisition geometry. Tests performed with data
contaminated by different levels of noises further demonstrate the
robustness of the proposed ASL. An impractically high noise level
shows that the migration artifacts become more obvious at deep
layers with increase in the number of iterations, which may be
responsible for the large cumulated traveltime errors caused by
high-level noise. In terms of computational efficiency, the PSM al-
ways needs some extra I/O operations (at least twice reading of the
simulated, perturbed, and observed seismic records of all shots),
whereas the ASL for CLSRTM requires no extra operations. Com-
pared with the commonly used PSM, the ASL is clearly more ef-
ficient.
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APPENDIX A

ANALYTICAL STEP-LENGTH FORMULA

In this appendix, we give a detailed deduction of the proposed
ASL formula based on the linear characteristic of the demigration
operator.
At the current state (i.e., stacked image r), by applying the Taylor

series expansion of α to the second order, the objective function
(1) can be approximated as

Eðrþ αδrÞ ¼ −
ZZ R

Mðrþ αδrÞ · DdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ½Mðrþ αδrÞ�2dt
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

D2dt
q dxsdxr;

(A-1)
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Figure 17. Common shot records of the 29th shot by adding Gaus-
sian white noise with the S/N of (a) 40 and (b) 20 dB.
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so that the objective function depends only on step length α when
the stacked image r and perturbed-stacked image δr are fixed (i.e.,
at the current state). Consequently, equation A-1 can be expanded
by a Taylor series of step length α

Eðrþ αδrÞ ≈ EðrÞ þ α½∇EðrÞ�Tδrþ α2

2
ðδrÞT ½∇2EðrÞ�δr

¼ cþ bαþ aα2

¼ EðrÞ þ ∂Eðrþ αδrÞ
∂α

				
α¼0

αþ 1

2

∂2Eðrþ αδrÞ
∂α2

				
α¼0

α2:

(A-2)

Considering the linear relationship between the data and param-
eters (the stacked image r and perturbed-stacked image δr) for this
problem, the data in the LSM problem are regarded as linear with
respect to the reflectivity or image,

Mðrþ αδrÞ ¼ MðrÞ þ αMðδrÞ: (A-3)

Substituting equation A-3 into A-1, we obtain

EðrþαδrÞ¼−
Z Z R

MðrþαδrÞ ·DdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ½MðrÞþαMðδrÞ�2dt
q ffiffiffiffiffiffiffiffiffiffiffiffiffiR

D2dt
q dxrdxs

¼−
Z Z R ðdþαδdÞ ·DdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðdþαδdÞ2dt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiR
D2dt

q dxrdxs; (A-4)

where δd ¼ MðδrÞ is the perturbed seismic data generated by the
perturbed-stacked image or descent direction δr. After comparing
the terms of the right sides of equation A-2, we obtain the following
relationships:

8>><
>>:

c ¼ EðrÞ;
b ¼ ∂EðrþαδrÞ

∂α

			
α¼0

;

a ¼ 1
2

∂2EðrþαδrÞ
∂α2

			
α¼0

.

(A-5)

If the objective function approaches its local or global minimum, the
expression satisfies the following condition:
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Figure 18. Migrated images of the Marmousi
model using noisy data contaminated with white
Gaussian noise and S/N of 40 dB. Panel (a) shows
the initial RTM image using CLSRTM, (b) the in-
verted image after eight iterations using CLSRTM
with the PSM, and (c) the inverted image after
eight iterations using CLSRTM with the ASL.
The acronym on the top left corner of each image
refers to the inversion method used for computa-
tion. The numbers in parentheses denote the cor-
responding iteration numbers.
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∂
∂α

Eðrþ αδrÞ ¼ 0: (A-6)

Substituting the relationship A-6 into the formula A-2, we obtain
the general form of the optimal step-length formula:

αopt ¼ −
b
2a

¼ −
∂EðrþαδrÞ

∂α

			
α¼0

∂2EðrþαδrÞ
∂α2

			
α¼0

: (A-7)

Taking the first-order derivatives of formula A-4 with respect to
step length α, we obtain the following expression:

∂EðrþαδrÞ
∂α

¼
ZZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
D2dt

q
�
−

R
δd ·DdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðdþαδdÞ2dt

q

þ
R ðdþαδdÞ ·Ddt� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðdþαδdÞ2dt
q �

3

Z
ðdþαδdÞ · δddt

�
dxrdxs:

(A-8)
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Figure 19. Migrated images of the Marmousi model
using noisy data contaminated with white Gaussian
noise and S/N of 20 dB. Panel (a) shows the initial
RTM image using CLSRTM, (b) the inverted image
after nine iterations using CLSRTM with the PSM,
and (c) the inverted image after seven iterations us-
ing CLSRTMwith the ASL. The acronym on the top
left corner of each image refers to the inversion
method used for computation. The numbers in
parentheses denote the corresponding iteration num-
bers.
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And taking the first-order derivatives of formula A-8 with respect to
step length α, we obtain the following expression:

∂2EðrþαδrÞ
∂α2

¼
Z Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiR
D2dt

q
8<
:
R
δd ·Ddt

R ðdþαδdÞ ·δddt� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðdþαδdÞ2dt
q �

3

þ
R
δd ·Ddt

R ðdþαδdÞ ·δddtþR ðdþαdÞ ·Ddt
R ðδdÞ2dt� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðdþαδdÞ2dt

q �
3

−3

R ðdþαδdÞ ·Ddt½R ðdþαδdÞ ·δddt�2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðdþαδdÞ2dt
q �

5

9=
;dxrdxs: (A-9)

Substituting equations A-8 and A-9 into equation A-7, we can ob-
tain the optimal step length:

αopt ¼ −
b
2a

(A-10)

being

a ¼ 1

2

ZZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

D2dt
q ffiffiffiffiffiffiffiffiffiffiffiffiffiR

d2dt
q

�
2

R
d · δddtR
d2dt

Z
δd

· Ddtþ
R ðδdÞ2dtR

d2dt

Z
d · Ddt

− 3

�R
d · δddtR
d2dt

�
2
Z

d · Ddt
�
dxrdxs (A-11)

and

b ¼
ZZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
D2dt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiR
d2dt

q
�R

d · Ddt
R
d · δddtR

d2dt

−
Z

δd · Ddt
�
dxrdxs: (A-12)
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