贵阳分部广州分部
网站地图联系我们所长信箱建议留言内部网English中国科学院
 
 
首页概况简介机构设置研究队伍科研成果实验观测合作交流研究生教育学会学报图书馆党群工作创新文化科学传播信息公开
  研究队伍
科研系列
技术系列
  您现在的位置:首页 > 研究队伍

姓名 乐新安 性别:
职称 研究员 学位 博士
电话 010-82998652 传真: 010-62010846
Email: yuexinan[a]mail.iggcas.ac.cn 邮编: 100029
地址 北京朝阳区北土城西路19号,中科院地质与地球物理研究所
更多信息:
 
简历:

  乐新安,男,研究员,博士生导师,国科大岗位教授,1980年出生于湖北省。国家杰出青年科学基金获得者、中组部青年人才计划入选者、中国科学院稳定支持基础研究青年团队骨干。曾在美国大气研究联盟(UCAR)工作7年,围绕GNSS掩星技术开展过系统研究。目前从事非相干散射雷达探测技术、电离层物理、电离层数值模拟与数据同化等相关的基础与应用基础研究。自主发展了基于稀疏矩阵的高效卡尔曼滤波电离层数据同化算法。作为首席科学家领导建设完成了世界首套相控阵体制的多站式非相干散射雷达——三亚非相干散射雷达三站式系统,建设成果被央视新闻联播报道。深度参与了国家大科学装置——子午工程二期的建设。在Nature Astronomy、GRL、JGR等杂志发表论文200余篇,其中第一/通讯论文80余篇,引用4000多次,H指数40。近五年在国内外会议作邀请报告20余次,受邀参加 ISSI 国际合作团队4次。

学习经历
1999-2003:华中师范大学物理科学与技术学院理科国家基础教育基地班,本科
2003-2008:中国科学院地质与地球物理研究所,博士

工作经历
2009-2011:美国大气研究联盟,研究科学家
2011-2013:美国大气研究联盟,1级项目科学家
2013-2015:美国大气研究联盟,2级项目科学家
2015.12-今:中国科学院地质与地球物理研究所,研究员
2017-今  : 中国科学院大学,岗位教授

访问经历
2018.1-3:美国麻省理工学院
2019.3-6:日本九州大学

 
学科类别:
空间物理学、地球与空间探测技术
 
研究方向:

非相干散射雷达探测技术、电离层物理、电离层数值模拟与数据同化、GNSS掩星技术

 
职务:
 
社会任职:
 
承担科研项目情况:

基金委杰出青年基金
中组部青年人才计划
三亚非相干散射雷达三站式系统(大科学装置关键设备)研制 (详见: www.syisr.ac.cn
中国科学院先导B项目
中国科学院稳定支持基础研究青年团队骨干

任职情况
中科院地球与行星物理重点实验室,副主任
非相干散射雷达实验室,主任
中国空间科学学会空间物理专委会,副主任

 
获奖及荣誉:
  1. 地球物理学会2022年度科学技术一等奖(1/10)
  2. 全球华人空间天气青年创新奖
  3. 中国科学院大学校级优秀研究生课程
  4. 中国科学院院长优秀奖


杂志的编辑编委:
Space Weather, Associate Editor
Earth and Planetary Physics, Editorial Board
地球物理学报,责任编委
地球与行星物理评论,编委

 
代表论著:

Researchgate: https://www.researchgate.net/profile/Xinan-Yue
Google Scholar: http://scholar.google.com/citations?user=UWF7N4wAAAAJ
ORCID: https://orcid.org/0000-0003-3379-9392

第一/通讯作者文章:

89. Yue, X.*, Ning, B., Jin, L., & Wang, C. (2024). A tristatic phased array radar system in China. Nature Astronomy, 8, 673. https://doi.org/10.1038/s41550-024-02274-z

88. Yue, X.*, Ning, B., Jin, L., et al. (2024). The Sanya Incoherent Scatter Radar Tristatic System and Initial Experiments.Space Weather, 22, e2024SW003963. https://doi.org/10.1029/2024SW003963

87. Zhang, N., Yue, X.*, Cai, Y., Wang, J., Li, M., Ding, F., & Ning, B. (2024). F Region neutral wind and electric field measured by SYISR and evaluation. Journal of Geophysical Research: Space Physics, 129, e2024JA032514. https://doi.org/10.1029/2024JA032514

86. Yue, X.*, Cai, Y., Wang, J., Lei, J., Wang, Z., Wang, Y., et al. (2023). Ionospheric pre-sunrise uplift: Comparison of Sanya Incoherent Scatter Radar observations and numerical simulations. Journal of Geophysical Research: Space Physics, 128, e2022JA031119. https://doi.org/10.1029/2022JA031119

85. Yan, L., He, F., Yue, X., Wei, Y., Wang, Y., Chen, S., et al. (2023). The 8-year solar cycle during the Maunder Minimum. AGU Advances, 4, e2023AV000964. https://doi.org/10.1029/2023AV000964 [共同一作]

84. Yue, X*., et al. (2023). On the Ion Line Calibration by Plasma Line in ISR Measurements. Remote Sensing, 2023, 15, 1553. https://doi.org/10.3390/rs15061553

83. Zhou, X., Yue, X.*, Wang, J., Cai, Y., Ding, F., Ning, B., et al. (2023). “Ionospheric drizzle” observed in the pre-dawn E-F valley over Sanya. Journal of Geophysical Research: Space Physics, 128, e2023JA031481. https://doi.org/10.1029/2023JA031481

82. Zhou, X., Yue, X.*, Cai, Y., Ren, Z., Wei, Y., & Pan, Y. (2023). Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides. Atmospheric Chemistry and Physics, 23, 6383–6393. https://doi.org/10.5194/acp-23-6383-2023

81. Cai, Y., Yue, X.*, Zhou, X., Ren, Z., Wei, Y., & Pan, Y. (2023). Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature. Atmospheric Chemistry and Physics, 23, 5009–5021. https://doi.org/10.5194/acp-23-5009-2023

80. He, J., Pedatella, N. M., Astafyeva, E., Yue, X.*, Ren, Z., & Yu, T. (2023). Improved thermosphere mass density recovery during the 5 April 2010 geomagnetic storm by assimilating NO cooling rates in a coupled thermosphere-ionosphere model. Journal of Geophysical Research: Space Physics, 128, e2023JA031959. https://doi.org/10.1029/2023JA031959

79. He, J., Astafyeva, E., Yue, X.*, Ding, F., & Maletckii, B. (2023). The giant ionospheric depletion on 15 January 2022 around the Hunga Tonga-Hunga Ha'apai volcanic eruption. Journal of Geophysical Research: Space Physics, 128, e2022JA030984. https://doi.org/10.1029/2022JA030984

78. 周旭, 乐新安*, 陈桂万, 余优, 胡连欢 (2023). MJO与中间层-低热层风场潮汐DE3季节内变化性的关联. 地球物理学报, 66(12): 4817-4827. https://doi.org/10.6038/cjg2023R0311

77. Yue, X.*, Wan, W., Ning, B., & Jin, L. (2022). An active phased array radar in China. Nature Astronomy, 6, 619. https://doi.org/10.1038/s41550-022-01684-1

76. Yue, X.*, Wan, W., Ning, B., Jin, L., Ding, F., Zhao, B., et al. (2022). Development of the Sanya incoherent scatter radar and preliminary results. Journal of Geophysical Research: Space Physics, 127, e2022JA030451. https://doi.org/10.1029/2022JA030451

75. Yue, X.*, Cai, Y., Ren, Z., Zhou, X., Wei, Y., & Pan, Y. (2022). Simulated long-term evolution of the ionosphere during the Holocene. Journal of Geophysical Research: Space Physics, 127, e2022JA031042. https://doi.org/10.1029/2022JA031042

74. Zhou, X., Yue, X.*, Ren, Z., Liu, Y., Cai, Y., Ding, F., & Wei, Y. (2022). Impact of Anthropogenic Emission Changes on the Occurrence of Equatorial Plasma Bubbles. Geophysical Research Letters, 49(3), e2021GL097354. https://doi.org/https://doi.org/10.1029/2021GL097354

73. Zhou, X., Yue, X.*, Yu, Y., & Hu, L. (2022). Day-to-Day Variability of the MLT DE3 using Joint Analysis on Observations from TIDI-TIMED and A Meteor Radar Meridian Chain. Journal of Geophysical Research: Atmospheres, 127. https://doi.org/10.1029/2021JD035794

72. Zhou, X., Yue, X.*, Liu, L., Yu, Y., Ding, F., Ren, Z., Jin, Y., & Yin, H. (2022). Decadal Continuous Meteor-Radar Estimation of the Mesopause Gravity Wave Momentum Fluxes over Mohe: Capability Evaluation and Interannual Variation. Remote Sensing, 14, 5729. https://doi.org/10.3390/rs14225729

71. Cai, Y., Yue, X.*, Wang, W., Zhang, S.-R., Liu, H., Lei, J., et al. (2022). Ionospheric topside diffusive flux and the formation of summer nighttime ionospheric electron density enhancement over Millstone Hill. Geophysical Research Letters, 49, e2021GL097651. https://doi.org/https://doi.org/10.1029/2021GL097651

70. Cai, Y., Yue, X.*, Wang, W., Zhang, S.-R., Liu, H., Lin, D., Wu, H., Yue, J., Bruinsma S. L., Ding, F., Ren, Z., & Liu, L. (2022). Altitude extension of the NCAR-TIEGCM (TIEGCM-X) and evaluation. Space Weather, 20, e2022SW003227. https://doi.org/10.1029/2022SW003227

69. He, J., Yue, X.*, Astafyeva, E., Le, H., Ren, Z., Pedatella, N. M., Ding, F., & Wei, Y. (2022). Global gridded ionospheric electron density derivation during 2006–2016 by assimilating COSMIC TEC and its validation. Journal of Geophysical Research: Space Physics, 127, e2022JA030955. https://doi.org/10.1029/2022JA030955

68. He, J., Yue, X.*, Le, H., Ren, Z., & Ding, F. (2022). High-resolution and accurate low-latitude gridded electron density generation and evaluation. Journal of Geophysical Research: Space Physics, 127, e2021JA030192. https://doi.org/10.1029/2021JA030192

67. Li, M., Yue, X.*, et al. (2022). Moon Imaging Technique and Experiments Based on Sanya Incoherent Scatter Radar. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14, no. 5112314. https://doi.org/10.1109/TGRS.2022.3167156

66. Li, M., Yue, X.*, Ding, F., Ning, B., Wang, J., Zhang, N., Luo, J., Huang, L., Wang, Y., & Wang, Z. (2022). Focused Lunar Imaging Experiment Using the Back Projection Algorithm Based on Sanya Incoherent Scatter Radar. Remote Sensing, 14, 2048. https://doi.org/10.3390/rs14092048

65. Li, M., Yue, X.*, & Wan, W. (2022). A new method to calibrate residual ionospheric error of GNSS RO bending angle. GPS Solutions, 26, 59. https://doi.org/10.1007/s10291-022-01235-1

64. Wan, W., Zhou, X., Yue, X.*, Wei, Y., Ding, F., & Ren, Z. (2022). Interpretation of the Altitudinal Variation in the Martian Ionosphere Longitudinal Wave‐3 Structure. Journal of Geophysical Research: Space Physics, 127(1), e2021JA030096. https://doi.org/10.1029/2021JA030096

63. Zeng, L., Yue, X.*, Ke, C., Ding, F., Zhao, B., & Ning, B. (2022). Potential direct observation of meteoroid fragmentation by a high range resolution radar. Icarus, 372, 114763. https://doi.org/10.1016/j.icarus.2021.114763

62. Wang, J., Yue, X.*, Ding, F., Ning, B., Jin, L., Ke, C., Zhang, N., Luo, J., Wang, Y., Yin, H., Li, M., & Cai, Y. (2022). The Effect of Space Objects on Ionospheric Observations: Perspective of SYISR. Remote Sensing, 14, 5092. https://doi.org/10.3390/rs14205092

61. Wang, J., Yue, X.*, Ding, F., Ning, B., Jin, L., Ke, C., Zhang, N., Wang, Y., Yin, H., Li, M., & Cai, Y. (2022). Simulation and observational evaluation of space debris detection by Sanya incoherent scatter radar. Radio Science, 57, e2022RS007472. https://doi.org/10.1029/2022RS007472

60. Zhang, N., Yue, X.*, Ding, F., Ning, B., Wang, J., Luo, J., Wang, Y., Li, M., & Cai, Y. (2022). Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar. Remote Sensing, 14, 3138. https://doi.org/10.3390/rs14133138

59. 尹翰林, 乐新安*, 王俊逸, 丁锋, 宁百齐, 王永辉, 李鸣远, 张宁 (2022). 基于CFAR的三亚非相干散射雷达数据预处理研究. 地球物理学报, 65(7), 2394-2401. https://doi.org/10.6038/cjg2022P0987

58. 李鸣远,乐新安*,魏勇,丁锋,宁百齐,曾令旗,赵必强 (2022). 巴克码无旁瓣滤波在地基雷达月球成像中的应用. 雷达科学与技术, 20(1), 22-27.

57. Cai, Y., Wang, W., Zhang, S.-R., Yue, X.*, Ren, Z., & Liu, H. (2021). Climatology Analysis of the Daytime Topside Ionospheric Diffusive O+ Flux Based on Incoherent Scatter Radar Observations at Millstone Hill. Journal of Geophysical Research: Space Physics, 126(10), e2021JA029222. https://doi.org/https://doi.org/10.1029/2021JA029222

56. He, J., & Yue, X.* (2021). The Impact of Perturbing Eddy Diffusion and Upper Boundary on the Ionosphere EnKF Assimilation System. Journal of Geophysical Research: Space Physics, 126. https://doi.org/10.1029/2021JA029366

55. He, J., Yue, X.*, & Ren, Z. (2021). The Impact of Assimilating Ionosphere and Thermosphere Observations on Neutral Temperature Improvement: Observing System Simulation Experiments Using EnKF. Space Weather, 19, e2021SW002844. https://doi.org/10.1029/2021SW002844

54. Li, M., & Yue, X.* (2021). Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement. Atmospheric Measurement Techniques, 14, 3003-3013. https://doi.org/10.5194/amt-14-3003-2021

53. Li, M., Yue, X.*, Zhao, B., Zhang, N., Wang, J., Zeng, L., et al. (2021). Simulation of the Signal-to-Noise Ratio of Sanya Incoherent Scatter Radar Tristatic System. IEEE Transactions on Geoscience and Remote Sensing, 59(4), 2982-2993. https://doi.org/10.1109/TGRS.2020.3008427

52. Zhou, X., Yue, X.*, Liu, H.-L., Wei, Y., & Pan, Y. (2021). Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations. Earth and Planetary Physics, 5, 1-10. https://doi.org/10.26464/epp2021040

51. Zhou, X., Yue, X.*, Liu, H. L., Lu, X., Wu, H., Zhao, X., & He, J. (2021). A Comparative Study of Ionospheric Day-To-Day Variability Over Wuhan Based on Ionosonde Measurements and Model Simulations. Journal of Geophysical Research: Space Physics, 126. https://doi.org/10.1029/2020JA028589

50. 李鸣远,王永辉,尹翰林,乐新安*,丁锋,曾令旗,赵必强,魏勇,宁百齐 (2021). 基于三亚非相干散射雷达的月球正面南北半球拼接成像研究. 地球与行星物理论评524),450-458. https://doi.org/10.19975/j.dqyxx.2021-014

49. 李明哲, 乐新安*2021. 电离层小尺度因素对无线电大气掩星弯曲角的影响. 航天器环境工程, 38(3), 318-327.

48. Yue, X.*, Wan, W., Xiao, H., Zeng, L. Q., Ke, C. H., Ning, B. Q., Ding, F., Zhao, B. Q., Jin, L., Li, C., Li, M. Y., Wang, J. Y., Hao, H. L., & Zhang, N. (2020). Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar. Earth and Planetary Physics, 4(6), 579–587. https://doi.org/10.26464/epp2020063

47. He, J., Yue, X. *, Hu, L., Wang, J., Li, M., & Ning, B., et al. (2020). Observing system impact on ionospheric specification over China using EnKF assimilation. Space Weather, 18, e2020SW002527. https://doi.org/10.1029/2020SW002527

46. Li, M., Yue, X. *, Wan, W., & Schreiner, W. S. (2020). Characterizing ionospheric effect on GNSS radio occultation atmospheric bending angle. Journal of Geophysical Research: Space Physics, 125, e2019JA027471. https://doi.org/10.1029/2019JA027471

45. Zhou, X., Liu, H.‐L., Lu, X., Zhang, R., Maute, A., Wu, H., Yue, X. *, & Wan, W. (2020). Quiet‐time day‐to‐day variability of equatorial vertical E × B drift from atmosphere perturbations at dawn. Journal of Geophysical Research: Space Physics, 125, e2020JA027824. https://doi.org/10.1029/2020JA027824

44. 何建辉, 乐新安* (2020). 基于热层电离层耦合数据同化的热层参量估计. 地球物理学报, 63(7), 2497-2505. https://doi.org/10.6038/cjg2020N0267

43. She, C., Yue, X.*, Hu, L., & Zhang, F. (2020). Estimation of Ionospheric Total Electron Content from a Multi-GNSS Station in China. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 852-860.

42. He, J., Yue, X.*, Le, H., Ren, Z., & Wan, W. (2020). Evaluation on the quasi‐realistic ionospheric prediction using an ensemble Kalman filter data assimilation algorithm. Space Weather, 18, e2019SW002410. https://doi.org/10.1029/2019SW002410

41. 姜金哲, 乐新安*, 任志鹏, 万卫星 (2020). 利用GCITEM-IGGCAS模拟DE2潮汐Hough波模对电离层的影响. 地球物理学报, 63(1), 57-62.

40. He, J., Yue, X.*, Wang, W., & Wan, W. (2019). EnKF ionosphere and thermosphere data assimilation algorithm through a sparse matrix method. Journal of Geophysical Research: Space Physics, 124, 7356-7365. https://doi.org/10.1029/2019JA026554

39. 王林, 万卫星, 乐新安*, 任志鹏, 佘承莉 (2019). 应用经验正交函数估算顶部电离层电子密度剖面. 地球物理学报, 62(05), 1582-1590.

38. Chen, T., Wan, W., Xiong, J., Yu, Y., Ren, Z., & Yue, X.* (2019). A statistical approach to quantify atmospheric contributions to the ITEC WN4 structure over low latitudes. Journal of Geophysical Research: Space Physics, 124, 2178–2197. https://doi.org/10.1029/2018JA026090

37. Cai, Y., Yue, X.*, Wang, W., Zhang, S., Liu, L., Liu, H., & Wan, W. (2019). Long‐term trend of topside ionospheric electron density derived from DMSP data during 1995–2017. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA027522

36. Yue, X.*, Hu, L., Wei, Y., Wan, W., & Ning, B. (2018). Ionospheric trend over Wuhan during 1947–2017: Comparison between simulation and observation. Journal of Geophysical Research: Space Physics, 123, 1396–1409. https://doi.org/10.1002/2017JA024675

35. Wang, J., Yue, X.*, Wei, Y., & Wan, W. (2018). Optimization of the Mars ionospheric radio occultation retrieval. Earth and Planetary Physics, 2, 292-302. https://doi.org/10.26464/epp2018027

34. 乐新安*,万卫星(2017). 数字电离层建设的必要性. 科技导报, 35(19), 62-66. https://doi.org/10.3981/j.issn.1000-7857.2017.19.008

33. Yue, X.*, Wan, W., Yan, L., Sun, W., Hu, L., &Schreiner, W. S. (2017). The Effect of Solar Radio Bursts on GNSS Signals, Chapter 22 in Book “Extreme Events in Geospace: Origins, Predictability, and Consequences”, edited by N. Buzulukova, published by Elsevier.

32. Hu, L., Yue, X. *, & Ning, N. (2017), Development of the Beidou Ionospheric Observation Network in China for space weather monitoring. Space Weather, 15, 974–984. https://doi.org/10.1002/2017SW001636

31. Yue, X.*, Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W. S., Zhao, B., & Hu, H. (2016). Mapping the conjugate and corotating storm-enhanced density during 17 March 2013 storm through data assimilation. Journal of Geophysical Research: Space Physics, 121, 12202-12210. https://doi.org/10.1002/2016JA023038

30. Yue, X.*, Wang, W., Lei, J., Burns, A., Zhang, Y., Wan, W., Liu, L., Hu, L., Zhao, B., & Schreiner, W. S. (2016). Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 121, 9234–9249. https://doi.org/10.1002/2016JA022984

29. Yue, X.*, Schreiner, W. S., Pedatella, N., & Kuo, Y.-H. (2016). Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather, 14, 285-299. https://doi.org/10.1002/2015SW001340

28. 乐新安*,郭英华,曾帧,万卫星 (2016). 近地空间环境的GNSS无线电掩星探测技术. 地球物理学报594),1161-1188. https://doi.org/10.6038/cjg20160401

27. Yue, X.*, Schreiner, W. S., Kuo, Y.-H., & Lei, J. (2015). Ionosphere equatorial ionization anomaly observed by GPS radio occultations during 2006–2014. Journal of Atmospheric and Solar-Terrestrial Physics, 129, 30-40. https://doi.org/10.1016/j.jastp.2015.04.004

26. Yue, X.*, Schreiner, W. S., Zeng, Z., Kuo, Y.-H., & Xue, X. (2015). Case study on complex sporadic E layers observed by GPS radio occultations. Atmospheric Measurement Techniques, 8, 225-236. https://doi.org/10.5194/amt-8-225-2015

25. Yue, X.*, Schreiner, W. S., Pedatella, N., Anthes, R. A., Mannucci, A. J., Straus, P. R., & Liu, J.-Y. (2014). Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12, 616-621. https://doi.org/10.1002/2014SW001133

24. Yue, X.*, Schreiner, W. S., Kuo, Y.-H., Braun, J. J., Lin, Y.-C., & Wan, W. (2014). Observing System Simulation Experiment Study on Imaging the Ionosphere by Assimilating ground GNSS, LEO based Radio Occultation and Ocean Reflection, and Cross Link. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 3759-3773. https://doi.org/10.1109/TGRS.2013.2275753

23. Yue, X.*, Schreiner, W.S., Kuo, Y-H., Hunt, D.C., & Rocken, C. (2013). GNSS Radio Occultation Technique and Space Weather Monitoring, Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), Nashville, TN, September 2013, pp. 2508-2522.

22. Yue, X.*, et al. (2013). The effect of the solar radio bursts on the GNSS radio occultation signals. Journal of Geophysical Research: Space Physics, 118, 5906–5918. https://doi.org/10.1002/jgra.50525

21. Yue, X.*, Schreiner, W. S., & Kuo, Y.-H. (2013). Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles. GPS Solutions, 17(3), 327-335. https://doi.org/10.1007/s10291-012-0281-9

20. Yue, X.*, Schreiner, W. S., Kuo, Y.-H., Wu, Q., Deng, Y., & Wang, W. (2013). GNSS radio occultation derived electron density quality in high latitude and polar region: NCAR-TIEGCM simulation and real data evaluation. Journal of Atmospheric and Solar-Terrestrial Physics, 98, 39-49. https://doi.org/10.1016/j.jastp.2013.03.009

19. Yue, X.*, Schreiner, W. S., Rocken, C., & Kuo, Y.-H. (2013). Validate the IRI2007 model by the COSMIC slant TEC data during the extremely solar minimum of 2008. Advance in Space Research, 51, 647-653. https://doi.org/10.1016/j.asr.2011.08.011

18. Yue, X.*, W. S. Schreiner,Y.-H. Kuo, D. Hunt , W. Wang, S. Solomon , A. Burns , D. Bilitza , J. Y. Liu , W. Wan , & J. Wickert (2012). Global 3-D Ionospheric Electron Density Reanalysis based on Multi-Source Data Assimilation. Journal of Geophysical Research: Space Physics, 117, A09325. https://doi.org/10.1029/2012JA017968

17. Yue, X.*, W. S. Schreiner, & Y.-H. Kuo (2012). A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model. Journal of Geophysical Research: Space Physics,117, A08301. https://doi.org/10.1029/2011JA017446.

16. Yue, X.*, W. S. Schreiner, C. Rocken, Y.-H. Kuo, & J. Lei (2012). Artificial ionospheric Wave Number 4 structure below the F2 region due to the Abel retrieval of Radio Occultation measurements. GPS Solutions, 16(1), 1-7. https://doi.org/10.1007/s10291-010-0201-9.

15. Yue, X.*, W. S. Schreiner, C. Rocken, & Y.-H. Kuo (2011). Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements. Radio Science, 46, RS1013. https://doi.org/10.1029/2010RS004514

14. Yue, X. *, W. S. Schreiner, D. Hunt, C. Rocken, & Y.-H. Kuo (2011). Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather, 9, S09001. https://doi.org/10.1029/2011SW000687

13. Yue, X.*, W. S. Schreiner, Y.-C. Lin, C. Rocken, Y.-H. Kuo, & B. Zhao (2011). Data assimilation retrieval of electron density profiles from radio occultation measurements. Journal of Geophysical Research: Space Physics, 116, A03317. https://doi.org/10.1029/2010JA015980

12. Yue, X.*, W. S. Schreiner, J. Lei, C. Rocken, D. C. Hunt, Y.-H. Kuo, & W. Wan (2010). Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. Journal of Geophysical Research: Space Physics, 115, A00G09. https://doi.org/10.1029/2010JA015466

11. Yue, X.*, W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, & Y.-H. Kuo (2010). Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Annales Geophyicae, 28(1), 217–222. https://doi.org/10.5194/angeo-28-217-2010

10. Yue, X.*, W. S. Schreiner, J. Lei, C. Rocken, Y.-H. Kuo, & W. Wan (2010). Climatology of ionospheric upper transition height derived from COSMIC satellites during the solar minimum of 2008. Journal of Atmospheric and Solar-Terrestrial Physics, 72(17), 1270-1274. https://doi.org/10.1016/j.jastp.2010.08.018

9. Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, G. Li, & B. Xiong (2010). Development of an ionospheric numerical assimilation nowcast and forecast system based on Gauss-Markov kalman filter-An observation system simulation experiment taking example for China and its surrounding area, Chinese Journal of Geophysics (both in Chinese and English), 53(4), 787-795. https://doi.org/10.3969/j.issn.0001-5733.2010.04.003 [乐新安, 万卫星, 刘立波, 宁百齐, 赵必强, 李国主, 熊波 (2010). 基于Gauss-Markov卡尔曼滤波的电离层数值同化现报预报系统的构建——以中国及周边地区为例的观测系统模拟试验, 地球物理学报,201004]

8. Yue, X., W. Wan, L. Liu, H. Le, Y. Chen, & T. Yu (2008), Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment, Chinese Science Bulletin (Both in Chinese and English), 53(1), 94-101. [乐新安, 万卫星, 刘立波, 乐会军, 陈一定, 余涛 (2007). 中低纬电离层理论模式的构建和一个观测系统数据同化试验. 科学通报, 200718]

7. Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, & M.-L. Zhang (2008). TIME-IGGCAS model validation: Comparisons with empirical models and observations. Science China Series E-Technical Science (Both in Chinese and English), 51(3), 308-322. [乐新安, 万卫星, 刘立波, 宁百齐, 赵必强, 张满莲 (2008). TIME-IGGCAS模式与经验模式和观测数据的比较. 中国科学(E:技术科学), 200807]

6. Yue, X., W. Wan, J. Lei, & L. Liu (2008). Modeling the relationship between E × B vertical drift and the time rate of change of hmF2 (ΔhmF2/Δt) over the magnetic equator. Geophysical Research Letters, 35, L05104. https://doi.org/10.1029/2007GL033051

5. Yue, X., L. Liu, W. Wan, Y. Wei, & Z. Ren (2008). Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century. Journal of Geophysical Research: Space Physics, 113, A10301. https://doi.org/10.1029/2007JA012995

4. Yue, X., W. Wan, L. Liu, & T. Mao (2007). Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations. Annales Geophysicae, 25, 1815-1825.

3. Yue, X., W. Wan, L. Liu, F. Zheng, J. Lei, B. Zhao, G. Xu, S. Zhang, & J. Zhu (2007). Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter. Radio Science, 42, RS6006. https://doi.org/10.1029/2007RS003631

2. Yue, X., W. Wan, L. Liu, & B. Ning (2006). An empirical model of ionospheric foE over Wuhan. Earth Planets Space, 58, 323-330.

1. Yue, X., W. Wan, L. Liu, B. Ning, & B. Zhao (2006). Applying artificial neural network to derive long-term foF2 trends in the Asia/Pacific sector from ionosonde observations. Journal of Geophysical Research: Space Physics, 111, A10303. https://doi.org/10.1029/2005JA011577.

合作作者文章:

125. Xu, S., Ding, F., Yue, X., Cai, Y., Wang, J., Zhou, X., Zhang, N., Song, Q., Mao, T., Xiong, B., et al. (2024). The Observation of Traveling Ionospheric Disturbances Using the Sanya Incoherent Scatter Radar. Remote Sensing, 16, 3126. https://doi.org/10.3390/rs16173126

124. Huang, F., Ruan, H., Lei, J., Zhong, J., Yue, X., Li, G., et al. (2024). Empirical models of foF2 and hmF2 reconstituted by global ionosonde and reanalysis data and COSMIC observations. Space Weather, 22, e2023SW003848. https://doi.org/10.1029/2023SW003848

123. Kuai, J., Sun, H., Liu, L., Zhong, J., Yue, X., Wang, K., et al. (2024). A case study of ionospheric storm-time altitudinal differences at low latitudes during the May 2021 geomagnetic storm. Journal of Geophysical Research: Space Physics, 129, e2024JA032484. https://doi.org/10.1029/2024JA032484

122. Hao, H., Zhao, B., Jin, Y., Yue, X., Ding, F., Li, G., et al. (2024). Latitude variation of the post-sunset plasma density enhancement during the minor geomagnetic storm on 27 May 2021. Journal of Geophysical Research: Space Physics, 129, e2023JA032156. https://doi.org/10.1029/2023JA032156

121. Li, S., Ren, Z., Yu, T., Chen, G., Li, G., Zhao, B., Yue, X., & Wei, Y. (2024). The daytime variations of thermospheric temperature and neutral density over Beijing during minor geomagnetic storm on 3–4 February 2022. Space Weather, 22, e2023SW003677. https://doi.org/10.1029/2023SW003677

120. Li, S., Ren, Z., Yu, T., Chen, G., Li, G., Zhao, B., Yue, X., &, Wei, Y. (2024). The daytime variations of thermospheric temperature and neutral density over Beijing during minor geomagnetic storm on 3–4 February 2022. Space Weather, 22, e2023SW003677. https://doi.org/10.1029/2023SW003677

119. Pedatella, N., Anderson, J., Hsu, C.-T., Ide, K., Kodikara, T., Laskar, F., … Yue, X. (2023). Development of Data Assimilation Systems for the Ionosphere, Thermosphere, and Mesosphere. Bulletin of the AAS, 55(3). https://doi.org/10.3847/25c2cfeb.6d356f92

118. He, J., Astafyeva, E., Yue, X., Pedatella, N. M., Lin, D., Fuller-Rowell, T. J., et al. (2023). Comparison of empirical and theoretical models of the thermospheric density enhancement during the 3–4 February 2022 geomagnetic storm. Space Weather, 21, e2023SW003521. https://doi.org/10.1029/2023SW003521

117. Li, X., Ding, F., Yue, X., Mao, T., Xiong, B., & Song, Q. (2023). Multiwave structure of traveling ionospheric disturbances excited by the Tonga volcanic eruptions observed by a dense GNSS network in China. Space Weather, 21, e2022SW003210. https://doi.org/10.1029/2022SW003210

116. Jin, Y., Zhao, B., Yue, X., Ning, B., Ding, F., Zhou, X., et al. (2023). An evaluation of beam configuration to detect the plasma vector velocity: A simulation method based on the SYISR system. Journal of Geophysical Research: Space Physics, 128, e2022JA031057. https://doi.org/10.1029/2022JA031057

115. Jin, Y., Zhao, B., Hao, H., Yue, X., Ding, F., Ning, B., Zeng, L., & Li, Z. (2023). Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR). Remote Sensing, 15, 2842. https://doi.org/10.3390/rs15112842

114. Hao, H., Zhao, B., Yue, X., Ding, F., Ning, B., & Zeng, L. (2023). Study on the Method of Extracting Plasma Lines Based on Sanya Incoherent Scatter Radar. Remote Sensing, 15, 2634. https://doi.org/10.3390/rs15102634

113. Chen, S., Wei, Y., Yue, X. et al. (2023). Correlation analysis between the occurrence of epidemic in ancient China and solar activity. Science China - Earth Science, 66, 161–168. https://doi.org/10.1007/s11430-022-9986-5

112. Li, S., Ren, Z., Yue, X., Liu, L., Yu, T., & Wei, Y. (2023). Extracting exospheric temperature from daytime ionospheric electron density profiles. Journal of Geophysical Research: Space Physics, 128, e2022JA030988. https://doi.org/10.1029/2022JA030988

111. He, F., Yao, Z. H., Ni, B. B., Cao, X., Ye, S. Y., Guo, R. L., Li, J. X., Ren, Z. P., Yue, X. A., Zhang, Y. L., Wei, Y., Zhang, X. X., & Pu, Z. Y. (2023). Sawtooth and dune auroras simultaneously driven by waves around the plasmapause. Earth and Planetary Physics, 7(2), 1–10. https://doi.org/10.26464/epp2023023

110. Liu, L., Yang, Y., Zhang, R., Tariq, M. A., Le, H., Chen, Y., ... Yue, X. (2023). Structure of post-midnight enhancements in electron density at the low latitude F-layer ionosphere. Journal of Geophysical Research: Space Physics, 128, e2023JA031376. https://doi.org/10.1029/2023JA031376

109. Zhang, S-R, Cnossen, I., Laštovička, J., Elias, A. G., Yue, X., Jacobi, C., Yue, J., Wang, W., Qian, L., & Goncharenko, L. (2023). Long-term geospace climate monitoring. Frontiers in Astronomy and Space Science, 10:1139230. https://doi.org/10.3389/fspas.2023.1139230

108. Hao, H., Zhao, B., Wan, W., Yue, X., Ding, F., Ning, B., et al. (2022). Initial ionospheric ion line results and evaluation by Sanya incoherent scatter radar (SYISR). Journal of Geophysical Research: Space Physics, 127, e2022JA030563. https://doi.org/10.1029/2022JA030563

107. Wang, C., Xu, J., LÜ, D., Yue, X., Xue, X., ChenG., Yan, J., Yan, Y., Lan, A., Wang, J., Wang, X., & Tian, Y. (2022). Construction Progress of Chinese Meridian Project Phase II. Chinese Journal of Space Science, 42(4), 539-545. https://doi.org/10.11728/cjss2022.04.yg09

106. Luo, X., Du, J., Lou, Y., Shengfeng, G., Yue, X., Liu, J., & Chen, B. (2022). A Method to Mitigate the Effects of Strong Geomagnetic Storm on GNSS Precise Point Positioning. Space Weather, 20. https://doi.org/10.1029/2021SW002908

105. Yu, B., Xue, X., Scott, C. J., Yue, X., & Dou, X. (2022). An empirical model of the ionospheric sporadic E layer based on GNSS radio occultation data. Space Weather, 20, e2022SW003113. https://doi.org/10.1029/2022SW003113

104. Li, X., Ding, F., Yue, X., & Li, J. (2022). Short-period concentric traveling ionospheric disturbances excited by the launch of China's Long March 4B rocket detected by 1 Hz GNSS data. Space Weather, 20, e2021SW003003. https://doi.org/10.1029/2021SW003003

103. Chen, Y., et al., Yue, X., et al. (2021). The Global Open Science Cloud Landscape. http://dx.doi.org/10.5281/zenodo.5575275

102. Chen, S., Wei, Y., He, F., Yue, X., Xu, K., Wang, Y., et al. (2021). Evaluation of the 900‐Year European Auroral Records With Extreme Value Theory. Journal of Geophysical Research: Space Physics, 126, e2021JA029481. https://doi.org/10.1029/2021JA029481

101. Liu, Z., Fang, H., Yue, X., & Lyu, H. (2021). Wavenumber‐4 Patterns of the Sporadic E Over the Middle‐ and Low‐Latitudes. Journal of Geophysical Research: Space Physics, 126, e2021JA029238. https://doi.org/10.1029/2021JA029238

100. Yu, T., Wang, W., Ren, Z., Cai, X., Yue, X., & He, M. (2021). The response of middle thermosphere (~160 km) composition to the 20-21 November 2003 superstorm. Journal of Geophysical Research: Space Physics126e2021JA029449. https://doi.org/10.1029/2021JA029449

99. Yu, T., Wang, W., Ren, Z., Yue, J., Yue, X., & He, M. (2021). Middle‐low latitude neutral composition and temperature responses to the 20‐21 November 2003 superstorm from GUVI dayside limb measurements. Journal of Geophysical Research: Space Physics, 126, e2020JA028427. https://doi.org/10.1029/2020JA028427

98. Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., & Wei, Y. (2021). Ancient Auroral Records Compiled From Korean Historical Books. Journal of Geophysical Research: Space Physics, 126, e2020JA028763. https://doi.org/10.1029/2020JA028763

97. Yu, B., Scott, C., Xue, X., Yue, X., Chi, Y., Dou, X., & Lockwood, M. (2021). A Signature of 27 day Solar Rotation in the Concentration of Metallic Ions within the Terrestrial Ionosphere. The Astrophysical Journal, 916, 106. https://doi.org/10.3847/1538-4357/ac0886

96. Yu, B., Scott, C., Xue, X., Yue, X., & Dou, X. (2021). Using GNSS radio occultation data to derive critical frequencies of the ionospheric sporadic E layer in real time. GPS Solutions, 25. https://doi.org/10.1007/s10291-020-01050-6

95. Yu, B., Xue, X., Scott, C., Wu, J., Yue, X., Wuhu, F., et al. (2021). Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation. Atmospheric Chemistry and Physics, 21, 4219-4230. https://doi.org/10.5194/acp-21-4219-2021

94. Zhang, N., Li, M., Zhao, B., Zeng, L., Yue, X., Hao, H., et al. (2021). A Detection Performance Analysis of Sanya Incoherent Scatter Radar Tristatic System. Radio Science, 56. https://doi.org/10.1029/2020RS007144

93. Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., & Wei, Y. (2021). Ancient auroral records compiled from Korean historical books. Journal of Geophysical Research: Space Physics, 126, e2020JA028763. https://doi.org/10.1029/2020JA028763

92. 梁宇, 赵必强, 郝红连,丁锋,曾令旗,乐新安,宁百齐(2020). 磁化等离子体非相干散射理论谱中的共振线研究.  地球物理学报, 63(12), 4291-4299. https://doi.org/10.6038/cjg2020O0321

91. Yu, B., Scott, C. J., Xue, X., Yue, X., & Dou, X. (2020). Derivation of global ionospheric Sporadic E critical frequency (foEs) data from the amplitude variations in GPS/GNSS radio occultations. Royal Society Open Science,7, 200320. http://doi.org/10.1098/rsos.200320

90. Zhong, J., Lei, J., & Yue, X. (2020). Comment on “Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016. Remote Sensing, 2019, 11, 2657”, Remote Sensing,12, no. 21: 3496. https://doi.org/10.3390/rs12213496

89. Sun, W., Ning, B., Hu, L., Yue, X., Zhao, X., Lan, J., et al. (2020). The evolution of complex Es observed by multi‐instruments over low‐latitude China. Journal of Geophysical Research: Space Physics, 125, e2019JA027656. https://doi.org/10.1029/2019JA027656

88. Yu, B., Scott, C.J., Xue, X., Yue, X., Dou, X. (2021), Using GNSS radio occultation data to derive critical frequencies of the ionospheric sporadic E layer in real time.GPS Solutions, 25, 14. https://doi.org/10.1007/s10291-020-01050-6

87. Ho, S.,Anthes, R. A., Ao, C. O., Healy, S., Horanyi, A., Hunt, D., Mannucci, A. J., Pedatella, N., Randel, W. J., Simmons,  A., Steiner, A., Xie, F., Yue, X., & Zeng, Z.  (2021). The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2. Bulletin of the American Meteorological Society, 101, 7. https://doi.org/10.1175/BAMS-D-18-0290.1

86. WuK., Xu, J., Yue, X., et al. (2020). Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Annales Geophysicae, 38, 163-177.

85. 梁宇, 赵必强, 乐新安,丁锋, 曾令旗, 郝红连, 宁百齐, 万卫星 (2020). 碰撞非相干散射理论谱宏观法和微观法的比较研究. 地球物理学报, 63(02), 387-393. 

84. Yu, T., Ren, Z., Yu, Y., Yue, X., Zhou, X., & Wan, W. (2020). Comparison of reference heights of O/N2 and ∑O/N2 based on GUVI dayside limb measurement. Space Weather, 18, e2019SW002391. https://doi.org/10.1029/2019SW002391.

83. Wei, Y., Zhong, J., Hui, H., Shi, Q., Cui, J., He, H., Zhang, H., Yao, Z., Yue, X., et al. (2020). Implantation of Earth's atmospheric ions into the nearside and farside lunar soil: Implications to geodynamo evolution. Geophysical Research Letters, 47, e2019GL086208. https://doi.org/10.1029/2019GL086208 

82. 易娟, 顾旭东, 李志鹏, 林仁桐, 蔡毅徽, 陈隆, 倪彬彬, 乐新安(2019). 基于LWPCIRI模型的NWC台站信号传播幅度建模分析. 地球物理学报, 62(09), 3223-3234.

81. Zhong, J., Lei, J., Yue, X., Luan, X., & Dou, X. (2019). Middle‐latitudinal band structure observed in the nighttime ionosphere. Journal of Geophysical Research: Space Physics, 124, 5857– 5873. https://doi.org/10.1029/2018JA026059.

80. Zhong, J., Lei, J., Yue, X., Wang, W., Burns, A. G., Luan, X., & Dou, X. (2019). Empirical orthogonal function analysis and modeling of the topside ionospheric and plasmaspheric TECs. Journal of Geophysical Research: Space Physics, 124, 3681– 3698. https://doi.org/10.1029/2019JA026691.

79. Yu, B., Xue, X., Yue, X., Yang, C., Yu, C., Dou, X., Ning, B., & Hu, L. (2019). The global climatology of the intensity of ionospheric sporadic E layer. Atmospheric Chemistry and Physics, 19, 4139-4151.

78. Yu, T., Ren, Z., Yue, X., Yu, Y., & Wan, W. (2019). Comparison of thermospheric density between GUVI dayside limb data and CHAMP satellite observations: Based on empirical model. Journal of Geophysical Research: Space Physics, 124, 2165– 2177. https://doi.org/10.1029/2018JA026229.

77. Zheng, Z., Lei, J., Yue, X., Zhang, X., & He, F. (2019), Development of a 3-D plasmapause model with a back-propagation neural network. Space Weather, 17. https://doi.org/10.1029/2019SW002360.

76. Zhao, B., Yang, C., Cai, Y., Jin, Y., Liang, Y., Ding, F., Yue, X., & Wan, W. (2019). East‐west difference in the ionospheric response of the March 1989 great magnetic storm throughout East Asian region. Journal of Geophysical Research: Space Physics, 124, 9364–9380.https://doi.org/10.1029/2019JA027108.

75. Zeng, X., Xue, X., Yue, X., Jia, M., Yu, B., Wu, J., & Yu, C. (2018). Global Statistical Study of Ionospheric Waves Based on COSMIC GPS Radio Occultation Data. Chinese Physics Letters, 35(10), 109401.

74. Jiang, J., Wan, W., Ren, Z., & Yue, X. (2018). Asymmetric DE3 causes WN3 in the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 173, 14-22.

73. He, F., Zhang, X.-X., Wang, W., Pu, Z.-Y., Zong, Q.-G., Yao, Z., Wei, Y., Ren, Z., Yue, X., Liu, L., & Wan, W. (2019). Evolution of the subauroral polarization stream oscillations during the severe geomagnetic storm on 20 November 2003. Geophysical Research Letters, 46, 599-607. https://doi.org/10.1029/2018GL081446

72. Hsu, C.‐T., Matsuo, T., Yue, X., Fang, T.‐W., Fuller‐Rowell, T., Ide, K., & Liu, J.‐Y. (2018). Assessment of the impact of FORMOSAT‐7/COSMIC‐2 GNSS RO observations on midlatitude and low‐latitude ionosphere specification: Observing system simulation experiments using Ensemble Square Root Filter. Journal of Geophysical Research: Space Physics, 123, 2296–2314. https://doi.org/10.1002/2017JA025109

71. Liu, H., Ding, F., Yue, X., Zhao, B., Song, Q., Wan, W., et al. (2018). Depletion and traveling ionospheric disturbances generated by two launches of China's Long March 4B rocket. Journal of Geophysical Research: Space Physics, 123, 10,319–10,330. https://doi.org/10.1029/2018JA026096

70. Yu, T., Miyoshi, Y., Xia, C., Zuo, X., Yan, X., Yang, N., Sun, Y., Yue, X., Mao, T. (2018). Solar dependence of equatorial F region irregularities observed by COSMIC radio occultations. Journal of Geophysical Research: Space Physics, 123, 9775–9787. https://doi.org/10.1029/2018JA025936

69. He, F., Zhang, X. X., Wang, W., Liu, L., Ren, Z., Yue, X., et al. (2018). Large‐scale structure of subauroral polarization streams during the main phase of a severe geomagnetic storm. Journal of Geophysical Research: Space Physics, 123, 2964–2973. https://doi.org/10.1002/2018JA025234

68. Lei, J., Huang, F., Chen, X., Zhong, J., Ren, D., Wang, W., Yue, X., et al. (2018). Was magnetic storm the only driver of the long‐duration enhancements of daytime total electron content in the Asian‐Australian sector between 7 and 12 September 2017? Journal of Geophysical Research: Space Physics, 123, 3217–3232. https://doi.org/10.1029/2017JA025166

67. Sun, W., Ning, B., Yue, X., Li, G., Hu, L., Chang, S., et al. (2018). Strong sporadic E occurrence detected by ground‐based GNSS. Journal of Geophysical Research: Space Physics, 123, 3050–3062. https://doi.org/10.1002/2017JA025133

66. Zhou, X., Wan, W., Yu, Y., Ning, B., Hu, L., & Yue, X. (2018). New approach to estimate tidal climatology from ground‐ and space‐based observations. Journal of Geophysical Research: Space Physics, 123, 5087–5101.https://doi.org/10.1029/2017JA024967

65. 魏勇, 戎昭金, 钟俊,柴立晖, 乐新安, 刘立波, 于晟, 朱日祥, 万卫星 (2017). 比较行星空间物理. 地球科学进展, 32(1), 15-20. https://doi.org/10. 11867/ j. issn. 1001-8166. 2017. 01. 0015

64. Xu, G., X. Yue, W. Zhang, & X. Wan (2017). Assessment of Atmospheric Wet Profiles Obtained from COSMIC Radio Occultation Observations over China. Atmosphere, 8(11), 208. https://doi.org/10.3390/atmos8110208

63. Wei, Y., X. Yue, Z. Rong, Y. Pan, W. Wan, & R. Zhu (2017), A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. https://doi.org/10.26464/epp2017009

62. Sheng C., Y. Deng, Y. Lu, andX. Yue (2017). Dependence of Pedersen conductance in the E and F regions and their ratio on the solar and geomagnetic activities.Space Weather,15, 484-494. https://doi.org/10.1002/2016SW001486

61. Zhong, J., J. Lei, W. Wang, A. G. Burns, X. Yue, & X. Dou (2017), Longitudinal variations of topside ionospheric and plasmaspheric TEC. Journal of Geophysical Research: Space Physics, 122, 6737-6760. https://doi.org/10.1002/2017JA024191

60. Yu, X., X. Yue, W. Zhen, J. Xu, D. Liu, & S. Guo (2017). On the occurrence of F-region irregularities over Haikou retrieved from COSMIC GPS radio occultation and ground-based ionospheric scintillation monitor observations: occurrence of F-region irregularities. Radio Science, 52, 3448. https://doi.org/10.1002/2016RS006014

59. Yang, C., B. Zhao, J. Zhu, X. Yue, & W. Wan (2017). An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements. Advance in Space Research, 60(8), 1617-1628. https://doi.org/10.1016/j.asr.2016.11.024

58. She, C., W. Wan, X. Yue, B. Xiong, Y. Yu, F. Ding, & B. Zhao (2017). Global ionospheric electron density estimation based on multisource TEC data assimilation. GPS Solutions, 21(3), 1125-1137. https://doi.org/10.1007/s10291-016-0580-7

57. Xue, X., G. Li. X. Dou, X. Yue, G. Yang, J. Chen, T. Chen, B. Ning, J. Wang, G. Wang, & W. Wan (2017). An overturning-like thermospheric Na layer and its relevance to Ionospheric field aligned irregularity and sporadic E. Journal of Atmospheric and Solar-Terrestrial Physics, 162, 151-161. https://doi.org/10.1016/j.jastp.2016.12.006

56. Su, F., W. Wang, A. G. Burns, X. Yue,F. Zhu, & J. Lin (2016).Statistical behavior of the longitudinal variations of daytime electron density in the topside ionosphere at middle latitudes.J. Geophys. Res. Space Physics,121, 11,56011,573.https://doi.org/10.1002/2016JA023029

55. Lei, J., J. Zhong, T. Mao, L. Hu, T. Yu, X. Luan, X. Dou, E. Sutton, X. Yue, J. Lin, I. S. Batista (2016), Contrasting behavior of the F2 peak and the topside ionosphere in response to the 2 October 2013 geomagnetic storm, J. Geophys. Res. Space Physics, 121, 10,549–10,563, https://doi.org/10.1002/2016JA022959

54. Mao, T., L. Sun, G. Yang, X. Yue, et al (2016). First ionospheric radio occultation measurements from GNSS Occultation Sounder on the Chinese Feng Yun 3C satellite, IEEE Trans. Geosci. Remote Sens., 54(9), 5044-5053, https://doi.org/10.1109/TGRS.2016.2546978

53. Zhong, J., J. Lei, X. Yue, and X. Dou (2016), Determination of Differential Code Bias of GNSS Receiver Onboard Low Earth Orbit Satellite, IEEE Trans. Geosci. Remote Sens., 54(8), 4896-4905, https://doi.org/ 10.1109/TGRS.2016.2552542

52. Zhong, J., W. Wang, X. Yue, A. G. Burns, X. Dou, and J. Lei (2016), Long-duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm, J. Geophys. Res. Space Physics, 121, 47334747 , https://doi.org/10.1002/2016JA022469

51. Liu, J.,W. Wang, A. Burns, X. Yue, S. Zhang, Y. Zhang, and C. Huang , 2016: Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm, J. Geophys. Res. Space Physics, 121, 727–744, https://doi.org/10.1002/2015JA021832

50. 徐桂荣, 乐新安, 张文刚, 万霞, 冯光柳 (2016). COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析. 暴雨灾害4315-325.

49. Su, F., W. Wang, A. G. Burns, X. Yue, and F. Zhu (2015), The correlation between electron temperature and density in the topside ionosphere during 2006–2009, J. Geophys. Res. Space Physics, 120, 10,724–10,739, https://doi.org/10.1002/2015JA021303

48. Pedatella, N. M., X. Yue, and W. S. Schreiner (2015), Comparison between GPS radio occultation electron densities and in situ satellite observations, Radio Sci., 50, 518–525. https://doi.org/10.1002/2015RS005677

47. Pedatella, N. M., X. Yue, and W. S. Schreiner (2015), An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles, J. Geophys. Res. Space Physics, 120, 8942–8953, https://doi.org/10.1002/2015JA021704.

46. Burns, A. G., S. C. Solomon, W. Wang, L. Qian, Y. Zhang, L. J. Paxton, X. Yue, J. P. Thayer, and H. L. Liu (2015), Explaining solar cycle effects on composition as it relates to the winter anomaly, J. Geophys. Res., 120, 5890–5898, doi:10.1002/2015JA021220.

45. Sun, L., J. Xu, W. Wang, X. Yue, W. Yuan, B. Ning, D. Zhang, and F. C. de Meneses (2015), Mesoscale field-aligned irregularity structures (FAIs) of airglow associated with medium-scale traveling ionospheric disturbances (MSTIDs), J. Geophys. Res. Space Physics, 120,9839-9858, doi:10.1002/2014JA020944.

44. Zhong, J., J. Lei, X. Dou, and X. Yue (2015), Assessment of vertical TEC mapping functions for space-based GNSS observations, GPS Solut., doi:10.1007/s10291-015-0444-6.

43. Zhong, J., J. Lei, X. Dou, and X. Yue (2015), Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability?, GPS Solut., doi:10.1007/s10291-015-0437-5.

42. Lin, J., and X. Yue (2015), Estimation and analysis of GPS satellite DCB based on LEO observations, GPS Solut., doi:10.1007/s10291-014-0433-1.

41. Luan, X., W. Wang, X. Dou, A. Burns, and X. Yue (2015), Longitudinal variations of the nighttime Elayer electron density in the auroral zone, J. Geophys. Res., 120, 825–833, doi:10.1002/2014JA020610.

40. Yu, X., C. She, W. Zhen, N. Bruno, D. Liu, X. Yue, M. Ou, and J. Xu, 2015: Ionospheric correction based on ingestion of Global Ionospheric Maps into the NeQuick 2 model. The Scientific World Journal, Article ID 376702, 11 pages, doi:10.1155/2015/376702.

39. Chen, Y., Wang, W., Burns, A. G., Liu, S., Gong, J., Yue, X., Jiang, G. and Coster, A. (2015), Ionospheric response to CIR-induced recurrent geomagnetic activity during the declining phase of solar cycle 23. J. Geophys. Res., 120: 1394–1418. doi: 10.1002/2014JA020657.

38. Zhao, B., J. Zhu, B. Xiong, X. Yue, M. Zhang, M. Wang, and W. Wan (2015), An empirical model of the occurrence of an additional layer in the ionosphere from the occultation technique: Preliminary results, J. Geophys. Res., 119, 10,204–10,218, doi:10.1002/2014JA020220.

37. Lin, J., X. Yue, Z. Zeng, Y. Lou, X. Shen, Y. Wu, W. S. Schreiner, and Y.-H. Kuo (2014), Empirical orthogonal function analysis and modeling of the ionospheric peak height during the years 2002–2011, J. Geophys. Res., 119, doi:10.1002/2013JA019626.

36. Lei, J., W. Wang, A. G. Burns, X. Yue, X. Dou, X. Luan, S. C. Solomon, and Y. C.-M. Liu (2014), New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations, J. Geophys. Res., 119, 2298–2317, doi:10.1002/2013JA019575.

35. Sheng, C., Y. Deng, X. Yue, and Y. Huang, 2014: Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. Journal of Atmospheric and Solar-Terrestrial Physics (2014), 115-116: 79-86, http://dx.doi.org/10.1016/j.jastp.2013.12.013.

34. Li, G., B. Ning, W. Wan, I. M. Reid, L. Hu, X. Yue, J. P. Younger, and B. K. Dolman (2014), Observational evidence of high-altitude meteor trail from radar interferometer, Geophys. Res. Lett.,41, doi:10.1002/2014GL061478.

33. Burns, A. G., W. Wang, L. Qian, S. C. Solomon, Y. Zhang, L. J. Paxton, and X. Yue (2014), On the solar cycle variation of the winter anomaly, J. Geophys. Res., 119, doi:10.1002/2013JA019552.

32. Sun, L., B. Zhao, X. Yue, T. Mao (2014), Comparison between ionospheric character parameters retrieved from FORMOSAT3 measurement and ionosonde observation over China. Chinese Journal Geophysics, 57(11): 3625-3632,doi: 10.6038/cjg20141116. [孙凌峰,赵必强,乐新安,毛田(2014),中国区域电离层垂测仪探测参量与COSMIC掩星反演结果比较研究,地球物理学报57(11)3625-3632.]

31. Ho, S.-P., X. Yue, Z. Zeng, A. Chi, C.-Y. Huang, E. R. Kursinski, and Y.-H. Kuo (2013), Applications of COSMIC Radio Occultation Data from the Troposphere to Ionosphere and Potential Impacts of COSMIC-2 Data, Bulletin of the American Meteorological Society, 95, ES18–ES22, doi: 10.1175/BAMS-D-13-00035.1.

30. Zhao, B., M. Wang, Y. Wang, Z. Ren, X. Yue, J. Zhu, W. Wan, B. Ning, J. Liu, and B. Xiong (2013), East-west differences in F-region electron density at midlatitude: Evidence from the Far East region, J. Geophys. Res., 118, 542-553, doi:10.1029/2012JA018235.

29. Liu, L., H. Le, Y. Chen, M. He, W. Wan, and X. Yue, 2011: Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J. Geophys. Res., 116, A09307, doi:10.1029/2011JA016691.

28. Zhao, B., W. Wan, X. Yue, L. Liu, Z. Ren, M. He, and J. Liu, 2011: Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/ FORMOSAT-3. Geophys. Res. Lett., 38, L02101, doi:10.1029/2010GL045744.

27. Li, G., B. Ning, M. A. Abdu, X. Yue, L. Liu, W. Wan, and L. Hu, 2011: On the occurrence of postmidnight equatorial F region irregularities during the June solstice. J. Geophys. Res., 116, A04318, doi:10.1029/2010JA016056.

26. Zhao, B., W. Wan, B. Reinisch, X. Yue, H. Le, J. Liu, and B. Xiong, 2011: Features of the F3 layer in the low-latitude ionosphere at sunset. J. Geophys. Res., 116, A01313, doi:10.1029/2010JA016111.

25. Lei, J., X. Yue, and W. S. Schreiner, 2010: Comment on “A new aspect of ionospheric E region electron density morphology” by Yen-Hsyang Chu, Kong-Hong Wu, and Ching-Lun Su. J. Geophys. Res., 115, A07313, doi:10.1029/2009JA015234.

24. Ding, F., W. Wan, B. Ning, L. Liu, H. Le, G. Xu, M. Wang, G. Li, Y. Chen, Z. Ren, B. Xiong, L. Hu, X. Yue, B. Zhao, F. Li, and M. Yang (2010), GPS TEC response to the 22 July 2009 total solar eclipse in East Asia, J. Geophys. Res., 115, A07308, doi:10.1029/2009JA015113.

23. Liu, L., M. He, X. Yue, B. Ning, and W. Wan (2010), Ionosphere around equinoxes during low solar activity, J. Geophys. Res., 115, A09307, doi:10.1029/2010JA015318.

22. Liu, L., W. Wan, B. Ning, M. Zhang, M. He, and X. Yue (2010), Longitudinal behaviors of the IRI-B parameters of the equatorial electron density profiles retrieved from FORMOSAT-3/COSMIC radio occultation measurements, Adv. Space Res., 46, 1064-1069, doi:10.1016/j.asr.2010.06.005.

21. Wan, W., J. Xiong, Z. Ren, L. Liu, M. L. Zhang, F. Ding, B. Ning, B. Zhao, and X. Yue (2010), Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide, J. Geophys. Res., 115, A11303, doi:10.1029/2010JA015527.

20. Wen, J., W. Wan, F. Ding, X. Yue, C. She, and L. Liu (2010), Experimental observation and statistical analysis of the vertical TEC mapping function, Chinese J. Geophys., 53 (1), 22-29, doi:10.3969/j.issn.0001-5733.2010.01.003. [温晋,万卫星,丁峰,乐新安,佘承丽,刘立波(2010),电离层垂直TEC映射函数的实验观测与统计特性,地球物理学报,53(1)22-29.]

19. Li, G., B. Ning, L. Hu, L. Liu, X. Yue, et al. (2010), Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004, J. Geophys. Res., 115, A04304, doi:10.1029/2009JA014830.

18. 周旭,万卫星,赵必强,乐新安,任志鹏(2010),基于CHAMP卫星观测数据对热层大气密度的经验正交分析,空间科学学报30(3)228-234.

17. Ren, Z., W. Wan, L. Liu, R. A. Heelis, B. Zhao, Y. Wei, and X. Yue (2009), Influences of geomagnetic fields on longitudinal variations of vertical plasma drifts in the presunset equatorial topside ionosphere, J. Geophys. Res., 114, A03305, doi:10.1029/2008JA013675.

16. Le, H., L. Liu, X. Yue, and W. Wan (2009), The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse, Ann. Geophys., 27, 179 – 184.

15. Le, H., L. Liu, X. Yue, W. Wan, and B. Ning (2009), Latitudinal dependence of the ionospheric response to solar eclipses, J. Geophys. Res., 114, A07308, doi:10.1029/2009JA014072.

14. Chen, Y., L. Liu, W. Wan, X. Yue, and S.-Y. Su (2009), Solar activity dependence of the topside ionosphere at low latitudes, J. Geophys. Res., 114, A08306, doi:10.1029/2008JA013957.

13. He, M., L. Liu, W. Wan, B. Ning, B. Zhao, J. Wen, X. Yue, and H. Le (2009), A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 114, A12309, doi:10.1029/2009JA014175.

12. Laštovička, J., X. Yue, and W.Wan (2008), Long-term trends in foF2: Their estimating and origin, Ann. Geophys., 26, 593-598.

11. Le, H., L. Liu, X. Yue, and W. Wan (2008), The ionospheric responses to the 11 August 1999 solar eclipse: observations and modeling, Ann. Geophys., 26, 107-116.

10. Mao, T., W. Wan, X. Yue, L. Sun, and B. Zhao (2008), An empirical orthogonal function model of total electron content over China, Radio Sci., 43, RS2009, doi:10.1029/2007RS003629.

9. Li, G., B. Ning, L. Liu, B. Zhao, X. Yue, S.-Y. Su, and S. Venkatraman (2008), Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E×B drifts at solar maximum, Radio Sci., 43, RS4005, doi:10.1029/2007RS003760.

8. Ren, Z., W. Wan, L. Liu, B. Zhao, Y. Wei, X. Yue, and R. A. Heelis (2008), Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere, Geophys. Res. Lett., 35, L05108, doi:10.1029/2007GL032998.

7. Le, H., L. Liu, X. Yue, and W. Wan (2008), The midlatitude F2 layer during solar eclipses: Observations and modeling, J. Geophys. Res., 113, A08309, doi:10.1029/2007JA013012.

6. Yu, X., W. Wan, L. Liu, X. Yue, and G. Xu (2007), A sudy of correlation distance of the day-to-day variability of F2-layer peak electron density over Europe, Chinese J. Geophys., 50(5), 1283-1288. [於晓,万卫星,刘立波,乐新安,徐贵荣(2007),欧洲地区电离层峰值电子密度逐日变化的相关距离研究,地球物理学报50(5), 1283-1288.]

5. Liu, L., W. Wan, X. Yue, B. Zhao B. Ning, and M. Zhang (2007), The dependence of plasma density in the topside ionosphere on the solar activity level, Ann. Geophys., 25, 1337-1343.

4. Liu, L., B. Zhao, W. Wan, S. Venkatraman, M. Zhang, and X. Yue (2007), Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes, J. Geophys. Res., 112, A07303, doi:10.1029/2007JA012283.

3. Le, H., L. Liu, B. Chen, J. Liu, X. Yue, and W. Wan (2007), Modeling the responses of the middle latitude ionosphere to solar flares, J. Atoms. Solar-Terres. Phys., 69, 1587-1598.

2. Wei, Y., M. Hong, W. Wan, A. Du, J. Lei, B. Zhao, W. Wang, Z. Ren, and X. Yue (2007), Unusually Long Lasting Impulsive Penetration of IEF to Equatorial Ionosphere under Oscillating IMF Bz, Geophys. Res. Lett., 35, L02102, doi:10.1029/2007GL032305.

1. Zhao, B., W. Wan, L. Liu, X. Yue, and S. Venkatraman (2005), Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis, Ann. Geophys., 23, 3615-3631.

 

地址:北京市朝阳区北土城西路19号 邮 编:100029 电话:010-82998001 传真:010-62010846
版权所有© 2009 中国科学院地质与地球物理研究所 备案序号:京ICP备05029136号