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Abstract. Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from
model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed
throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing
performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one
among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist
boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The
Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The
sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve
a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing
performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is
based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few
layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing
incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves,
convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models.
The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing
performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude
errors as the full waveform inversion.
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Introduction

Numerical modelling of seismic wavefields is important for
understanding wave phenomena in complex media and is
essential for full waveform inversion. Due to the restrictions on
both memory requirement and computational cost, the model has to
be limited in size and focused on the area of interest by introducing
artificial boundaries. Therefore, an artificial boundary condition is
needed to absorb the energy of the reflections from these artificial
boundaries. Two main kinds of solutions have been proposed for
this purpose: absorbing boundary conditions (ABCs) (e.g. Clayton
and Engquist, 1977; Reynolds, 1978; Liao et al., 1984; Higdon,
1986; Higdon, 1991) and absorbing boundary layers (e.g. Cerjan
et al., 1985; Kosloff and Kosloff, 1986; Compani-Tabrizi, 1986,
Sochacki et al., 1987; Bérenger, 1994; Komatitsch and Martin,
2007; Liu and Sen, 2010, 2012).

The ABC splits the wave equation into two directions: inside
and outside equations using the one-way wave equation method
(Claerbout, 1985); then, only the outside equation is used
on one or two layers outside of the interested area to avoid
reflections inwards (as shown in Figure 1a). The ABC has a
good performance when the incident waves are propagating
within a certain angle range, especially when the incident
waves are close to the direction normal to the boundary. When
the incident angle is large (say 60° away from the direction normal
to the boundary), the energy of artificial reflections would be
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boosted because the accuracy of both travel time and amplitude
calculated with the one-way wave equation at wide angles is low.

The ABC has been popular since the early 1970s, and some of
the classical ABCs can be defined up to any desired order;
however, the appearance of increasingly high-order derivatives
in these ABCs renders them impractical beyond a certain order,
typically 2 or 3. For example, the m-order Higdon boundary
involves m-order derivatives both in space and time, and is thus
very inconvenient for implementation when m is large (Bécache
etal.,2010). Collino (1993) devised a new scheme for high-order
ABCs by using special auxiliary variables. This scheme is based
on a reformulation of the sequence of ABC that was proposed
by Higdon (1986). In contrast to the original formulation of
the Higdon conditions, this scheme does not involve any high
derivatives beyond the second order by introducing special
auxiliary variables. As a result, this scheme can be easily used
up to any desired order m. Moreover, the computational cost
only increases linearly with m (Givoli and Neta, 2003; Givoli,
2004). Corner compatibility conditions are derived for high-order
radiation boundary conditions using auxiliary variable equations
(Hagstrom and Warburton, 2004; Bécache et al., 2010).

The absorbing boundary layers use many layers to attenuate
the artificial reflections gradually; thus, we can greatly reduce
artificial reflections with an adequate number of layers (as shown
in Figure 15). There are three kinds of absorbing boundary layers:
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Fig. 1. Sketch map of the (@) absorbing boundary condition and (b)
absorbing boundary layers. The square area in the middle is working area.
The thick dashed-dot line in (a) represents the ABC applied outside the
working area. The black solid lines in (b) represent the absorbing boundary
layers applied outside the working area.

the sponge boundary (e.g. Cerjan et al., 1985; Compani-Tabrizi,
1986; Kosloff and Kosloff, 1986; Sochacki et al., 1987), the
perfectly matched layer (PML) (e.g. Bérenger, 1994; Chew and
Liu, 1996; Hastings et al., 1996; Collino and Tsogka, 2001;
Marcinkovich and Olsen, 2003; Wang and Tang, 2003), and the
hybrid absorbing boundary condition (Liu and Sen, 2010, 2012).

The sponge boundary (e.g. Cerjan et al., 1985; Compani-
Tabrizi, 1986; Kosloff and Kosloff, 1986; Sochacki et al., 1987)
is composed of dozens of layers outside the interested area. The
sponge boundary introduced by Cerjan et al. (1985) avoids
apparent inwards reflections by directly attenuating the
wavefield with a gradually enhanced attenuation factor from
inner to outer of the damping boundary belt. This method is
simple in numerical implementation since there is no need to
modify the wave equations. Sochacki et al. (1987) implemented
the attenuation of seismic waves in the sponge boundary by
introducing attenuation term directly to the wave equation. Zhou
(1988) pointed out that a careful selection of the width of the
damping boundary belt and attenuation factor is essential for the
success of reducing the artificial reflections. However, no perfect
rule for the selection has been available until now and one has to

choose optimal parameters via numerical tests before it is ready
for practical applications.

The PML (Bérenger, 1994) applies a completely new
mechanism to avoid apparent artificial reflections. The PML
introduces physical attenuations to the wave equation. The PML
modifies the partial derivatives in the wave equation using
complex coordinate stretching by introducing an imaginary part
associated with an attenuation factor. Complex coordinate
stretching is well known for viscoelastic media to understand
the nature of the intrinsic attenuation for wave propagation;
thus, the PML presents a nice rule in designing the optimal
attenuation coefficients by tuning the attenuation factor.
Rabinovich et al. (2010) compared high-order ABC with the
PML in the frequency domain.

Although the traditional PML has been widely used in seismic
wave simulations, it produces apparent artificial reflections for
nearly grazing incident waves, low-frequency waves, and
evanescent waves (e.g. Festa and Vilotte, 2005; Komatitsch
and Martin, 2007; Drossaert and Giannopoulos, 2007a).
Complex frequency-shifted PML (Kuzuoglu and Mittra, 1996)
has a better absorbing performance in these cases (e.g. Festaetal.,
2005; Festa and Vilotte, 2005; Drossaert and Giannopoulos,
2007a, 2007h; Komatitsch and Martin, 2007). In addition, the
traditional PML adopts a non-physical splitting of wave
equations, which has been proved to be weakly well posed
(Abarbanel and Gottlieb, 1997). Thus, the convolutional PML
is proposed to overcome this problem (e.g. Roden and Gedney,
2000; Komatitsch and Martin, 2007). Roden and Gedney (2000)
further derived a non-split wavefield of convolutional complex
frequency-shifted PML (CPML) that can be efficiently calculated
with recursive convolution algorithm (Luebbers and Hunsberger,
1992). Kristek et al. (2009) discussed the split/unsplit, classical/
convolutional and general/special PML formulations in detail,
which can help the reader understand the classification of different
PML formulations.

Recently, the PML with auxiliary differential equations
(ADE-PML) has been proposed (e.g. Gedney and Zhao, 2010;
Martin et al., 2010; Zhang and Shen, 2010). Both CPML and
ADE-PML can be implemented for complex frequency-shifted
operators, but the ADE form allows for extension to higher order
time schemes and is also easier to implement for avoiding the
convolutional calculation. Xie et al. (2014) gave a thorough
review on the development from PML to ADE-PML.

Liu and Sen (2010, 2012) proposed a hybrid ABC. They split
the model into three parts: the working area, the transition area and
the ABC. The wavefields within the transition area are averaged
by a linear weighting function between the wavefields generated
by a two-way wave equation (i.e. acoustic wave equation) and
one-way wave equation. The transition area smoothly absorbs
the wavefields that propagate outside the working area and thus
can decrease the boundary reflections. The hybrid ABC performs
better than either the pure ABC or pure sponge boundary.

Inthe field of seismic exploration, artificial boundary conditions
are becoming more and more important with an increasing demand
on both the accuracy and computational efficiency of the migration
and inversion, especially for large-scale 3D complex models. We
need to further reduce computational cost and memory demands
for the artificial boundary conditions. However, various artificial
boundary conditions arise in history; thus, it is not so easy to be
familiar with all of them, although this is necessary for further
improvement towards much faster and smarter absorbing boundary
conditions.

In this paper, we provide a thorough review of all typical
absorbing boundary conditions and derive their equations in a
uniform mathematical form. Then, we reveal the fundamental
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similarities and differences between similar methods through
theoretical analyses. Next, we examine the performance of
these boundary conditions via numerical experiments and
qualitatively show their advantages and disadvantages. Finally,
we summarise their applicable conditions and give some
comprehensive suggestions on choosing different boundary
conditions for practical applications.

Absorbing boundary conditions
Clayton and Engquist boundary

Engquist and Majda (1977) discussed absorbing boundary
conditions for a general class of differential equations based
on pseudo-differential operators. Clayton and Engquist (1977)
derived the absorbing boundary condition applicable to both
acoustic and elastic wave equations by the approximation of a
one-way wave equation. Engquistand Majda (1979) tried to solve
the stability problem at the corners. Here we call this method the
Clayton and Engquist boundary.

For a medium of the form D={(x, z, f)|—-a<x<a,
—b <z<b}, a2D scalar wave equation can be expressed as

Op Op 10 (1)
o2 02 o
We apply the Fourier transform on both temporal and spatial
variables to Equation 1, and the dispersion relation can be
obtained as follows
2
w
=2 2)
%
where k, and k. are the horizontal and vertical wavenumbers,
respectively; w is the circular frequency, p is the displacement,
v is the velocity of the acoustic wave propagating in the
media. According to the one-way wave equation theory
(Claerbout, 1985), we can obtain the square-root operator
along x-direction as follows

2
e _ 1—<V—kz), 3)
w

w

where 4 represents a plane wave propagating along the positive
or negative x-axis, respectively. The one-way wave equation
method can separate the incoming and outgoing wavefields
around the boundaries. For the positive x-axis at the right

boundary, we have
2
vk _ (ﬁ) , (4)
w W

which is the dispersion relation of the one-way wave equation that
controls the wave propagations outwards. The one-way wave
equation is solved iteratively along spatial directions; thus, only
the wavefield on the previous one or two layers are needed to
generate the wavefield in the current layer. In other words,
wavefields beyond the boundary are not needed, which means
no boundary reflection occurs at the outer layer (i.e. the right
boundary).

Taylor-series expansion of the square-root operator on the
right side of Equation 4 leads to unstable differencing schemes
(Engquist and Majda, 1977); thus, Clayton and Engquist (1977)
expanded this operator by Padé approximation. The first three
orders are as follows (Clayton and Engquist, 1977):

vk

LIt (5

and

The recurrence relation for the above approximations is

(5) ©

_1—|—aj_1’
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where a; = 1.

Equations 6 and 7 are widely used in designing one-way wave
equation migration algorithms (Claerbout, 1985). The differential
formats corresponding to Equations 5—7 are as follows (Clayton
and Engquist, 1977)

op 1op
Al —4+-——= 9
ax+v6t 0, ©)
2 2 2
Op [10p vOp_ (10)
ox0t vorr 20z
and
o 0* 10° o
Ay 0P Y Op 10p WO (11)
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where Al, A2, and A3 are right absorbing boundary conditions
using the first, second and third order paraxial approximation,
respectively. The accuracy analyses of these three
approximations are shown in Figure 2, compared with the
analytical solution. Obviously, high orders have better
accuracy than lower orders do. But the error of the third order
is still apparent for wide angles away from the normal direction
to the boundary. On the other hand, it is a little difficult to solve
the third order approximation shown in A3; in contrast, Al is
simple in implementation but its accuracy is too low. Therefore,
A2 is a reasonable trade-off and is widely used. The differential
equations for A2 on the left, upper and bottom boundaries are as
follows (Clayton and Engquist, 1977):

A,

<

A1

Y

A3

Fig.2. Dispersion relations for the scalar wave equation. Curves A1, A2 and
A3 are the dispersion relations of the first three orders using paraxial
approximations to the scalar wave equation, respectively.
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The Clayton and Engquist boundary needs the value of
wavefields both along x-axis and z-axis; thus, the corners
would act as point sources and cause instabilities (Engquist
and Majda, 1979). Therefore, special treatments are needed at
the corners for high-order Clayton and Engquist boundary
conditions. One can replace A2 with Al at the corners by
assuming that the incident angle is 45° at the corners to avoid
numerical instabilities (Clayton and Engquist, 1977; Engquist
and Majda, 1979). For example, the differential formula for the
lower right-hand corner becomes (Clayton and Engquist, 1977)
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Similarly, the other three corners for the absorbing boundary
conditions are expressed as
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According to the plane wave solutions of the wave equation,
plane waves spread to the right boundary can be written as

p(x,z, 1) = expljo(t — kx + k.z)]

15
= exp[jo(t — kxcos 0 £ kzsin 0)], (15)

where 0 is the incident angle, namely the included angle between
the wavefront and the x-axis; k, and . are the wavenumbers along
x-axis and z-axis, respectively; and k is the wavenumber along the
incident angle. Similarly, the reflected wave can be expressed as

p(x,z,t) = rexpljo(t + kx £ k.z)], (16)

where 7 is the reflection coefficient. The total wavefields around
the boundary are

px,z,t) = expljo(t — kex £ k.z)] + rexpljo(t + kx £ k.z)].
(17)

Taking Equation 17 into the right boundary conditions, we can
obtain the reflection coefficient (Clayton and Engquist, 1977) as

1 —cosf\/
= — 18
g (1 + cos 9) ’ (18)
where j=1, 2, 3 represents the first, second and third order
paraxial approximation, respectively; and 0 is the incident
angle. Figure 3 shows the absolute value of the reflection

coefficient versus incident angle for different orders of the
Clayton and Engquist boundaries.

Reynolds boundary

Reynolds (1978) derived another absorbing boundary condition
based on the one-way wave equation, which is known as the
transparent boundary condition. Here we call it the Reynolds
boundary. The wave Equation 1 can be rewritten as follows:

1.0

—-—-= Reynolds, s =0.25

R p— Reynolds, s=0.5

0.8} |— Reynolds, s=0.75

———— {st-order Clayton & Engquist
——— 2nd-order Clayton & Engquist
3rd-order Clayton & Engquist
---=---- 1st-order Higdon

0.5t |==== 2nd-order Higdon

- === 3rd-order Higdon
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Fig.3. Comparison of the absolute value of the reflection coefficient for the
Clayton and Engquist, Reynolds, and Higdon boundaries.
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Equation 19 becomes
1% *p o%p 10p 10p
S S e ShVEE ) [ ey —— L 21
V2 O (6x2 + 622> (v ot + 117) <v ot 1p>, @1
where 1/v Op/0t + Lip =0 corresponds to the right boundary, and

1/v Op/ot—Lip=0 corresponds to the left boundary. Using
Taylor-series expansion L; can be approximated as follows:

0 10° /&
Lix—(1l+-—/=—]. 22
' < s /6x2) (22)
Thus, on the right boundary we have
100p op 10 (23)
—— =+ - = =a.
voxor  ox? 2022 ’
Substituting
2 2 2
Op 10p 0Op (24)

2 Vo

into Equation 23, we obtain

100p 13% 113
108 10p 1100 _o 4 (29)
voxOr 20x2  2v2 02

Equation 25 is the expression of the Reynolds boundary on the

right side.

Considering the stability condition of the finite-difference
method, we can replace the coefficient of 0°p/dz” in Equation
23 by s/(1+s), where s = vAt/Ax, At is the temporal interval, and Ax
is the spatial interval in x-direction; thus, Equation 23 becomes
(Reynolds, 1978)
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which can be rearranged as

10p Op\(sOp Op\ _
(v@ﬁ@x) (vaﬁa =0
Obviously, Equation 23 is the special case when s=vA#/
Ax=1.

Similarly, the Reynolds boundaries on the left, upper, and
bottom boundaries are as follows (Reynolds, 1978):

1op o\ (st T\ _,
vor ox)\vor ox)
1op O\ (st _Tp\ _,
vor oz)\vor oz)
10p Op\/[/sOp Op

(;a+§)<vaﬁaz =0

Taking the right boundary as an example, we substitute
Equation 17 into Equation 26 and obtain

= ()7 X =a, (26)

x=a. (27)

1
— (ko cos Be™ — rke cos Be")
v

+ (szwcoszeeM — rk?wcos?0e) (29)
(—k*sin*0eM — ri*sin’0e) = 0,

1+

where 0 is the incident angle, M= j(wt—kx cos O0+kz sin 0), and
N=j(wt+ kxcos 0 + kz sin 0). Thus, the reflection coefficient of
the Reynolds boundary versus the incident angle is (Reynolds,
1978)

N

cos f — cos?f — 1 sin’6
| = £S MV, (30)
cos 0 + cos?0 + sin®
1+s

Figure 3 shows the absolute value of the reflection coefficient
versus incident angle using different s for the Reynolds boundary.

Higdon boundary

Bayliss and Turkel (1980) proposed an absorbing boundary
condition in the spherical coordinate system. Higdon (1986)
further derived a progressive absorbing boundary equation in
the Cartesian coordinate system (Higdon, 1986, 1987, 1990,
1991). We call this absorbing boundary condition the Higdon
boundary for simplicity. Peng and Toksoz (1995) optimised the
coefficients to improve the absorbing performance.

Plane waves spread to the right boundary can be written as
Equation 15, which also satisfies the boundary condition

0 0
(cosH&Jrva)p—O, x=a. (31)

Equation 31 can be regarded as a compatibility condition
for Equation 15, and it can annihilate waves moving at angles
of incidence =46. In particular, the boundary condition
Op/ox+1/vOp/dt=0 is compatible with outgoing waves
moving at normal incidence, which is the first-order Clayton
and Engquist boundary. Similarly, a linear combination of plane
waves moving outward at angles +0y,. .., +0,, would exactly
satisfy the high-order versions (Higdon, 1986)

e 0 0
Bmp = {H(coseja—k Va)

p=0, x=a, (32)

where m is the order of the absorbing boundary condition, and
0; is the angular parameter that can be chosen. Higdon (1986)
demonstrated that the application of Equation 32 as the
absorbing boundary can completely absorb the incident waves
along the incident angle 40, in theory.

Higdon (1991) pointed out that the angle 0; can be chosen
to take advantage of a priori information about the direction
that along which waves are expected to approach the boundary.
For example, if waves near normal incidence are of greatest
importance, then we use 0,=0 for all j. If a wide range of incident
angles presents, then it may be advisable to move 0; away from
0° so as to distribute the roots of the reflection coefﬁc1ent at
a broad range of angles. In general, the optimal choice of 0,
is problem dependent. We use 6;=0 and 6, =7/6 as the angle
parameters for the second-order Higdon boundary in this paper.

Similarly, we can get the equations on the left, upper, and
bottom boundaries as follows (Higdon, 1991):

B,p = H(cos&,% vaa)_p—o, X =—a,

Bup = ﬁ <cos 0, 3 vsz) p=0, z=-b, (33)
=1 1

B.p = ﬁ(cosﬂjat—i—v;) p=0, z=5b.
Lj=1

When m=1, 2, 3, Equation 32 can be written as follows
(Higdon, 1991)

0 0
Bl: Bip = costh L +vZ —o, (34)
ot ox
o’ o’
B2: Byp = cos b cos b — p + (cos Oy + cos Hz)v—p
6 2 atax (35)
2 o’p
L—o
v ox2 ’

and

3

0
B3: Bsp =cosf; cos b cos b3 — p + (cos 8 cos b,

e
’p
+ cos 6, cos 03 + cos 0 cos QS)VW
o o
+ (cos B} + cos B, + cos B3 azazz +4? é =0.

(36)

B1, B2 and B3 are the first, second and third order Higdon
boundaries on the right side, respectively. Similar to the
Clayton and Engquist boundary, it is complex to solve B3 but
B1 is too simple; thus, B2 is preferred for practical applications.
Substituting Equation 17 into Equation 32, we obtain the
reflection coefficient of the Higdon boundary (Higdon, 1986)

“r (cos 6; — cos O
" 11:[ (cos 6; + cos 9) ' (37)
where 0 is the incident angle, and 0; is a preferred incident angle
that hopes to be perfectly absorbed Figure 3 shows the absolute
value of the reflection coefficient of the Higdon boundary versus
angles for different orders.
For the right boundary of the second-order Higdon boundary,

the differential operator form of Equation 32 when m=2 is as
follows (Higdon, 1987; Sun, 2003)
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where [ is the unit operator, which satisfies £,./=E, and A=A,
A and B are the control parameters for the finite-difference
scheme. Differential operator expressions on space and time
are as follows:

k _ ok
Expj_j =Pir1> 39
E ko k+1 ( )
WPij = Dij >

where i and j are indices of spatial grids along x- and z-directions,
respectively; and k is the index of temporary grids.

Equation 38 includes three type of finite-difference schemes:
the forward Euler when 4=0, B=1, the backward Euler when
A=0,B=0,and the box scheme when4=0.5,B=0.5. We use the
forward Euler difference scheme in this paper. For more details
of other cases, readers can refer to Higdon (1987).

Relationship between Reynolds boundary, Clayton
and Engquist boundary and Higdon boundary

Relationship between the Reynolds boundary
and the Clayton and Engquist boundary

Equation 25 is the Reynolds boundary on the right side,
under the special case when s=vA#/Ax=1. Equation 10 is the
second-order Clayton and Engquist boundary on the right side.
According to Equation 1, we replace 0°p/0z* in Equation 10 by
IV*0%p/or* — 9°p/dx” and obtain

13% 1 0% 1%

voxdr  2v2 02 22
We see that Equation 40 is exactly the same as Equation 25; thus,
the second-order Clayton and Engquist boundary is the special
case when s =vA#/Ax=1 of the Reynolds boundary.

As shown in Figure 3, when the incident angle is less than 45°,
the absolute value of the reflection coefficient of the second-order
Clayton and Engquist boundary is less than that of the Reynolds
boundary for s=0.25 and s=0.5, but the absolute value of the
reflection coefficient of the Reynolds boundary is large when
s=0.75. From 45° to 60°, the absolute value of the reflection
coefficient of the second-order Clayton and Engquist boundary
is less than that of the Reynolds boundary when s =0.25 but larger
when s=0.5 and s =0.75. When the incident angle is greater than
60°, the absolute value of the reflection coefficient of the second-
order Clayton and Engquist boundary is larger than those of the
Reynolds boundaries.

At the four corner points, high-order (from the second-order)
Clayton and Engquist boundaries need special treatments, which
are derived by assuming that the incident angle is 45°. However,
in actual simulation, especially for media with complex
structures, we do not know the exact direction of the incident
wave; thus, the Clayton and Engquist boundary would encounter
strong reflections from corners when incident waves are far away
from 45°. In contrast, the Reynolds boundary does not need any
special treatment at corner points and is more straightforward in
implementation.

0. (40)

Relationship between Clayton and Engquist boundary
and Higdon boundary

From Equations 9-11, and Equations 34-36, we see that
Al and Bl are the same when cosf; =1; A2 and B2 are the
same when cosf,=cosf,=1; A3 and B3 are the same when
costl; =cosl, =cosl;=1. Therefore, the Clayton and Engquist
boundary is the special case of the Higdon boundary when the
incident angle used is equal to 0°.

As shown in Figure 3, the absolute value of the reflection
coefficient of the first-order Higdon boundary is exactly the same
as that of the first-order Clayton and Engquist boundary. The
second-order Higdon boundary always has a smaller absolute
value for the reflection coefficient than the second-order Clayton
and Engquist boundary does. Similarly, the third order Higdon
boundary always has smaller absolute value of the reflection
coefficient than the third order Clayton and Engquist boundary
does.

For the second-order boundary, the Reynolds boundary seems
to have much smaller absolute value of the reflection coefficient,
~60° compared to both the Clayton and Engquist boundary
and the Higdon boundary; however, its absolute value of the
reflection coefficient is much bigger than the latter, between 20°
to 40°. This means that the actual performance of the Reynolds
boundary would not be as good as that of the other two methods.

Absorbing boundary layers
Cerjan sponge boundary

Cerjan et al. (1985) proposed to eliminate the reflected wave by
setting the damping boundary with multilayers outside the
working area. An outward decaying exponential function can
effectively reduce incident waves. In each time step of the
wavefield extrapolation, the amplitude of the seismic wave on
each grid within the absorption area is decayed by the Gauss
function (Cerjan et al., 1985)

G(Z) :exp[—)uz(no—n)z] ) n:0,1,27-~-7n0, (41)

where / is the attenuation coefficient, n is the grid index of the
damping area, and n is the layer number of the damping area (i.e.
the index of the outer most layer). Cerjan etal. (1985) gave a set of
empirical parameters no=20 and 41=0.015 through numerical
experiments. Bording (2004) pointed out that these parameters
are not optimised and suggested a group of optimised parameters
no=45 and 1=0.0053.

Sochacki sponge boundary

Cerjan et al. (1985) showed that decaying the amplitudes of the
waves by multiplying by an exponential function in a region
surrounding the model can considerably reduce reflections for
waves at any angle of incidence. Their method, however, acts on
discrete numerical solutions rather than on the wave equation.
Sochacki et al. (1987) implemented the attenuation of seismic
waves in the sponge boundary by introducing an attenuation term
directly to the wave equation. The wave equation is extended as
(Sochacki et al., 1987)

Op op O p  Fp
L V] oL L 42
o T2 5 = (ax2 + az2)’ “42)
where A(x, z) is the attenuation function. In the working area,
A(x, z)=0; in the damping area, Sochacki et al. (1987) suggested
five kinds of damper as follows:
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1. Linear damper (Sochacki et al., 1987)

=12,

where o= S/MN., x; =x¢ + Ax, zy =z¢ + Az, M, is the length of
attenuation zone along the x-direction, N, is the length of the
attenuation zone along the z-direction, and S= || 4 ||..=max {4 (x,

2%
2. Exponent damper (Sochacki et al., 1987)

A(x,z) = af(x — x0)(z — 20)], (44)

where f=InS/[InM,N.—InAxAz], and o= (AxAz)#;
3. Cubic damper (Sochacki et al., 1987)
A(x,2) = of(x = x0)(z = 20)T, (45)

where o= S/(MXNZ)3 ;
4. Exponential damper (Sochacki et al., 1987)

A(x,z) = aexp[f(x — x0)(z — 20)], (46)

where ff=1In S/[(M—Ax)(N.—Az)], and o =exp(—fAxAz);
5. Gaussian damper (Sochacki et al., 1987)

e

A(x,z) = aexp Lx .
where = {(Ax+tA4z)(M, + N,)/[(M, + N,)—(Ax+4z)]}In S, and
o=exp[—p/(Ax + Az)].

Compared with the Cerjan sponge boundary, the Sochacki
sponge boundary has the following advantages: first, the damping
term has a physical meaning and can be used to study the effects of
friction and other dissipative phenomena on acoustic and elastic
waves; second, it is easier to determine the reflection coefficient;
third, since the damping term is part of the wave equation, a
variety of numerical techniques can be used and theoretical results
are more easily obtained.

Perfectly matched layer

Bérenger (1994) introduced a completely new boundary
condition called the perfectly matched layer (PML). The PML
has a remarkable property of having a zero reflection coefficient
for all incident angles and all frequencies for the continuous wave
equation. The PML shows great superiority over the classical
boundary conditions mentioned above and is widely used in
acoustic wave simulations (e.g. Abarbanel and Gottlieb, 1997;
Liu and Tao, 1997; Qi and Geers, 1998; Liu, 1999; Katsibas and
Antonopoulos, 2002; Diaz and Joly, 2006; Bermudez et al.,2007)
and elastic wave simulations (e.g. Chew and Liu, 1996; Hastings
etal., 1996; Collino and Tsogka, 2001; Festa and Nielsen, 2003;
Komatitsch and Tromp, 2003; Basu and Chopra, 2004; Festa
et al., 2005, Festa and Vilotte, 2005; Appeld and Kreiss, 2006;
Komatitsch and Martin, 2007; Yangetal.,2007; Lan etal., 2013).
The PML has been further extended to other methods, such as the
pseudo-spectral method (Liu, 1998), the finite element method
(Collino and Tsogka, 2001), the spectral element method (Festa
and Vilotte, 2005), and the grid method (Xu and Zhang, 2008).

The 2D scalar wave equation shown in Equation 1 can be
rewritten as (Liu and Tao, 1997; Hustedt et al., 2004)

Opx 5 04,

x

ot ox ’
op- 504

=V ,

ot 0z

04: _ Op: | Op: (48)
or ox  ox’
04: Opx  Op:
o oz oz
P =Dx+D:

After transforming into the frequency domain by the Fourier
transform, Equation 48 becomes

04
P, — 2 Odx
i VA
04
f Pz = - )
110)) Vv aZ
oo oP, OP. (49)
WAy = —— 5
! ox  Ox
- oP, OP.
Az = - )
1 Oz Oz
P = Px + Pza

where P, P,, P, A, and A, are the Fourier transforms of P,, P.,
p, A, and A_, respectively.

The essence of the PML is to replace propagating (oscillating)
waves with exponentially decaying waves by analytically
continuing the wave equation into complex coordinates (e.g.
Bérenger, 1994; Collino and Tsogka, 2001; Nataf, 2013) using

0 1 0

ox | +dx'(x)a’ (50)
i
where d, (x) is the attenuation coefficients in x-direction, which
can be obtained by (Collino and Tsogka, 2001)

w2 @all)

where v, is the maximum acoustic wave velocity, J is the
thickness of the PML area, and R is the theoretical reflection
coefficient. We use R=10"° when 6 = 10Ax, and R=10"" when
6 =20Ax.

Substituting Equation 50 into Equation 49, we obtain

ioP. = * L@_le
T jw+d, Ox
ioP. =V La_;lz
T dw+d 0z
- i oP, 0P, (52)
od, = ——— (== :
od = d, (ax * 6x)
WA, = - )
! io+d, \ 0z Oz
P=P,+P,.
After rearranging Equation 52, we have
04
/ dr P, = ? )
(iw + dy) v
04
! dz Pz = VZ 27
(iow +d;) %
. . (oP,  oP. (53)
dr Ax = )
(i + dv) (6x+6x>
. - oP, 0P,
(ieo +d:)d; = (5* az)v

P =P, +P..
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Finally, the acoustic wave equation with PML can be expressed
as (Liu and Tao, 1997)

a§2+dzpz:\/2%7

a;x XAX:%DW%];Z (54)
TR =

P =Ds D

Convolutional perfectly matched layer

The wave equation is extended to complex coordinates by
(Komatitsch and Martin, 2007)

dy
e = , 55
S =Kot oy + i (53)
= Omax(1 —=X/0), ttmax = Ttf0, fo 1s the dominant frequency
of the source, and Y, =1 + (Jmax —1) (¥/0)*. Generally y, =1 is
good enough for most applications (Komatitsch and Martin,
2007). Thus, we can obtain

1 1 1 d 1

Sx Xt oLy -Hw X sz (% + OCx) + iw '

where o

(56)

On the assumption that s, (¢) is the inverse Fourier transform of
1/s, about @, we have

Ky — 50) _iu e*(;—iﬂﬁ)t 57
x(t) = % sz (t) . ( )
Denoting
L() = —dfxzu(t)e; (’é_“) (58)
X
we obtain
5x(1) = ? + 4. (59)

In the time domain, we have

1
Oz = 5,(1) x 0, = |—
s

X

N mr)*} 3 (60)

where O; = 0/0x% and 0,=0/0x. At the nth time step, the
convolutional term in Equation 60 can be written as

ndt
v :j & (). (61)

0

The integral in Equation 61 is written as a discrete form:

(m+1)dt Andt—
mae - Or Ce(T)dT
m*

- 20@55‘('"“) ()

_ nil Z. (m)@,:i (m+3) )
m=0

Using Equations 61 and 62, we obtain

(m+1)dt dx
Zx(m) = J Cx(‘c)dr = )
mdt XX
TR R
mdt

Letb, =exp[ —(d./yx+ oymdr], a, = (b, — )d/[E(d + Y )]
Using the recursive convolution algorithm deduced by Luebbers
and Hunsberger (1992), we have

U= b + a(0,)" (64)

thus,

& = [i—i—é'x(t)*} o =10, 1y, (65)
Xx x
Pasalic and McGarry (2010) gave a detailed derivation of
CPML for the second-order acoustic wave equation. Introducing
new auxiliary variables ¢, and ¢., we can rewrite the second-
order spatial derivatives in terms of the first-order derivatives as

(Pasalic and McGarry, 2010)

10 /10 10 (10
5, Ox (skax)_sxax (anerwx)

66
10 lap (66)
= ax\xa +w + bx,
where
13%" "
=si v H L) @)

The CPML implementation for the acoustic wave equation is
expressed as (Pasalic and McGarry, 2010)

10°p Op Op O, Oy,

10 _ 68
STttt et (Y

A
A
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3
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AN

Working area

Fig.4. Sketch map of the hybrid absorbing boundary condition (ABC). The
grey zone is the transition area.
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Hybrid ABC

Liu and Sen (2010, 2012) proposed an efficient hybrid ABC
to absorb boundary reflections. The transition area is added
between the working area and the model boundary. Figure 4
shows the sketch map of the hybrid ABC. The wavefields in the
transition area (grey area in Figure 4) are weighted between two-
way wavefields and one-way wavefields, where the one-way
wavefields are calculated by the second-order Higdon boundary.
A linear weighting function is used to sum the wavefields (Liu and
Sen, 2010, 2012).

wAi)pone, (69)

where p™° are the two-way wavefields, p°”® are the one-way
wavefields, wy = (i—1)/N, and N is the number of layers used in
the hybrid ABC.

p= WAiptwo + (1 -

Numerical experiments
Square model

We perform numerical experiments on a homogeneous medium.
The wave velocity of a square model is 2500 m/s. The spatial grid
interval is 5 m, and the grid number is 301 x 301. The source is a

Ricker wavelet with a dominant frequency of 20 Hz. We compare
the boundary reflections using various boundary conditions: the
second-order Clayton and Engquist boundary; the second-order
Higdon boundary; the Reynolds boundary; the Cerjan sponge
boundary (with 20 absorbing layers) (using parameters given by
Cerjan et al., 1985); the Sochacki sponge boundary (20 layers)
(using the linear damper given by Sochacki et al., 1987); the
hybrid ABC (10 layers and 20 layers); the PML (10 layers and 20
layers); and the CPML (10 layers and 20 layers).

Artificial absorbing boundary conditions are used on all
boundaries of the model. We perform 12 sets of experiments
to compare the reflections of several absorbing boundary
conditions. We use a very large model to simulate the
theoretical wavefield to avoid boundary reflections, which can
be regarded as a reference to check the performance of the
artificial absorbing boundary conditions.

Figures 5 and 6 show the snapshots obtained by different
boundary conditions. Figures 7 and 8 show the waveforms
obtained by different boundary conditions. Figure 9 shows the
wavefield records obtained on the ground surface (i.e. Om in
depth). The maximum value of the wavefield records is 0.1294.
Among the three ABC, the absorption performance of the Clayton
and Engquist boundary is better than that of the Reynolds

Dlstance
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Depth (m)

T

1000

N /N

Fig. 5.

/ 500 R / \/ \/ \
.. /\ /\ .
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Snapshots of the wavefield using different boundary conditions at 450 ms: (a) theoretical wavefield; (b) the Clayton and Engquist boundary; (c) the

x1072
1.0

0.5

20-layer Cerjan boundary (Cerjan-20); (d) the 10-layer hybrid absorbing boundary condition (ABC) (Hybrid-10); (e) the 10-layer perfectly matched layer (PML-
10); (f) the 10-layer convolutional complex frequency-shifted perfectly matched layer (CPML-10); (g) the Reynolds boundary; (/) the Higdon boundary; (i) the
20-layer Sochachki boundary (Sochachki-20); (7) the 20-layer hybrid ABC (Hybrid-20); (k) the 20-layer PML (PML-20); and (/) the 20-layer CPML (CPML-20).
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Fig. 6. Snapshots of the wavefield using different boundary conditions at 650 ms: (@) theoretical wavefield; (b) the Clayton and Engquist boundary; (c) the 20-
layer Cerjan boundary (Cerjan-20); (d) the 10-layer hybrid absorbing boundary condition (ABC) (Hybrid-10); (e) the 10-layer perfectly matched layer (PML-10);
(f) the 10-layer convolutional complex frequency-shifted perfectly matched layer (CPML-10); (g) the Reynolds boundary; (/) the Higdon boundary; (i) the 20-
layer Sochachki boundary (Sochachki-20); (f) the 20-layer hybrid ABC (Hybrid-20); (k) the 20-layer PML (PML-20); and (/) the 20-layer CPML (CPML-20).
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boundary, and the absorption performance of the Higdon
boundary is the best. The hybrid ABC (Liu and Sen, 2010,
2012) is shown to be superior to the Higdon boundary.
Compared with the PML and CPML, however, absorption
performance of the hybrid ABC is relatively poor. In terms of
the computational cost, at least, the Higdon boundary is superior
to the absorbing layers (i.e. hybrid ABC, PML, CPML or sponge
boundary) since only one or two layers are involved in the
computations. Therefore, the Higdon boundary would be a
good candidate when the demand of absorbing performance is
not so serious but the computational cost is heavy.

x1072

1.0 T T T T T

Amplitude

- = =Higdon
e REyNOlS
Cerjan-20
—-—--Sochacki-20
————— Clayton & Engquist

750 1000
Distance (m)

o 250 1250

Fig. 7. Waveforms of boundary reflections using different absorbing
boundary conditions at 650 ms. This is a horizontal slice in the snapshot
crossing the source location.

The absorption performance of the sponge boundary is not as
good as that of the PML method and even poorer than that of the
Higdon boundary. Of course, the absorption performance of the
sponge boundary may be improved after some careful tests and
selections on the parameters (e.g. tuning the thickness of the
damping belt and the attenuation coefficients). Nevertheless, our
numerical results shown here reveal that the sponge boundary
would have potential risks, and further research is still needed for
reliable or universally optimal parameters.

As shown in Figure 8, the 20-layer PML (or CPML) performs
better than the 10-layer one does, since the former has almost no

x1072
1.0 . . . . :
Hybrid-10
- PML-10
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CPML-20
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©
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g
< 05} 1
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Fig. 8. Waveforms of boundary reflections using different absorbing
boundary conditions at 650 ms. This is a horizontal slice in the snapshot
crossing the source location. The enlarged portion of the black frame is shown
in the figure.
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Fig. 9. Shot records of a point source with different absorbing boundary conditions: (a) theoretical wavefield; (b) the Clayton and Engquist boundary; (c) the
20-layer Cerjan boundary (Cerjan-20); (d) the 10-layer hybrid absorbing boundary condition (ABC) (Hybrid-10); (e) the 10-layer perfectly matched layer (PML-
10); (f) the 10-layer convolutional complex frequency-shifted perfectly matched layer (CPML-10); (g) the Reynolds boundary; (/) the Higdon boundary; (i) the
20-layer Sochachki boundary (Sochachki-20); (7) the 20-layer hybrid ABC (Hybrid-20); (k) the 20-layer PML (PML-20); and (/) the 20-layer CPML (CPML-20).



Comparison of absorbing boundaries

Exploration Geophysics K

Distance (m)

500

—_
o
o
o

150
300

0
150

300
0

-

150

-

300
0

150

300

Depth (m)

150

P

300
0

150

— |

-

300
0
150

300

150

300

900 ms

1500

=

! !

600 ms

2000 2500 3000

x1072

—_
o

0.5

300 ms

Fig.10. Snapshots ofa point source at 2500 m along x-direction and 0 m depth in the narrow slice model with different absorbing boundary conditions at 300 ms,
600 ms and 900 ms: (a) theoretical wavefield; (b) Higdon boundary; (¢) Hybrid-10; (d) PML-10; (e) CPML-10; (f) Hybrid-20; (g) PML-20; and () CPML-20.

visible boundary reflections. In addition, the 10-layer PML has
smaller artificial reflections than the 20-layer hybrid ABC does.
This indicates that the PML is superior to the hybrid ABC with the
same number of absorbing layers.

Long model

In practical applications, our model is sometimes very large in
scale, which would lead to a nearly grazing incidence when the
wavefields are propagating far away from the source. We further
examine various absorbing boundary conditions for a large-scale
long model. The grid number is 601 x 61. The seismic source is
located at 2500 m along x-direction and 50 m in depth. The other
parameters are the same as the square model. Seven boundary
conditions are compared: the second-order Higdon boundary, the
hybrid ABC (with 10 and 20 absorbing layers), the PML (10 and
20 layers) and the CPML (10 and 20 layers). We use a much larger
scale model to generate an artificial-reflection free case as the
reference for checking the absorbing performance.

Figure 10 shows the snapshots of the wavefield at three
different time steps. Figure 11 shows the differences between
absorbing boundary conditions and an artificial-reflection free
reference, which can be regarded as the error or artificial

reflections introduced by the absorbing boundary condition.
Figure 12 shows the waveforms recorded at a depth of O m at
different time steps. The maximum value of the wavefield records
is 0.1127. Obviously, the wavefront is moving away from the
source position with increasing time, and the incident angle
gradually increases; finally, the wavefront grazes the boundary
at large distances, as shown in Figures 10 and 11. The Higdon
boundary exhibits significant artificial reflections at grazing areas,
as shown in Figure 11. Nevertheless, the hybrid ABC has a better
absorbing performance than the Higdon boundary. However, the
hybrid ABC is still less efficient for absorbing the nearly grazing
incidence since it is based on a one-way wave equation.

In contrast, the PML performs better than the hybrid ABC, and
the CPML performs better than the PML does. The 20-layer PML
performs better than the 10-layer CPML when the grazing effects
are not so obvious at short traveltimes; in contrast, when the
grazing effects are strong at long travel times, the CPML shows
it to be necessary to absorb these grazing waves, as shown in
Figures 13 and 14. Figure 15 shows the single-trace records using
different boundary conditions. For the convenience of comparing
the absorption performances of different boundary conditions, we
calculate the numerical reflection coefficient using
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Fig. 11. Snapshots of the wavefield difference of a point source at 2500 m along x-direction and 0 m depth in the narrow slice model with different absorbing
boundary conditions at 300 ms, 600 ms and 900 ms: (a) theoretical difference; (b) wavefield difference between Higdon and theoretical; (¢) wavefield difference
between Hybrid-10 and theoretical; (d) wavefield difference between PML-10 and theoretical; (e) wavefield difference between CPML-10 and theoretical;
(f) wavefield difference between Hybrid-20 and theoretical; (g) wavefield difference between PML-20 and theoretical; and (/) wavefield difference between
CPML-20 and theoretical.
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Fig. 12. Waveforms using different boundary conditions along x-direction at 0 m depth: (@) a slice from 1750 m to 2375 m at 300 ms;
(b) a slice from 250 m to 875 m at 900 ms.
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Fig.13. Shotrecords ofapoint source with different absorbing boundary conditions: (a) theoretical wavefield; (b) Higdon boundary; (¢) Hybrid-10; (d) PML-10;
(e) CPML-10; (f) Hybrid-20; (g) PML-20; and (k) CPML-20.
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Fig. 14. Wavefield difference of shot records with different absorbing boundary conditions: (a) theoretical difference; (b) wavefield difference between Higdon
and theoretical; (c) wavefield difference between Hybrid-10 and theoretical; (d) wavefield difference between PML-10 and theoretical; (¢) wavefield difference
between CPML-10 and theoretical; (f) wavefield difference between Hybrid-20 and theoretical; (g) wavefield difference between PML-20 and theoretical; and
(h) wavefield difference between CPML-20 and theoretical.
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Fig. 16. Comparison of the reflection coefficient computed by numerical
simulations: (a) absolute values of numerical reflection coefficient; (b) the dB
values of numerical reflection coefficient.

max (prer) — Max(Pmod)
max(prer)
where p,., is the theoretical wavefield without artificial

reflections, and the p,,; is the wavefield with different
artificial boundary conditions. Figure 16a shows the numerical

R, = , (70)

Fig. 17. Modified Marmousi velocity model.

reflection coefficient for different boundary conditions at
different incident angles, and Figure 160 shows the decibel
(dB) values of numerical reflection coefficient calculated by

dB(R,) = 20log,R,. (71)

Figure 16bh shows that the 10-layer CPML has a better
absorbing performance compared with the 10-layer PML for
the nearly grazing incident wave from 63° to 78°. However,
the 20-layer CPML only has slight advantage over the 20-layer
PML from 80° to 84°. With the same number of absorbing layers,
the CPML has better absorbing performance than the PML does;
however, we can still use more layers for the PML instead of using
a thin CPML. In addition, we see that the 10-layer PML is better
than the 20-layer hybrid ABC.

Therefore, the absorption performance from good to poor in
sequence is: CPML-20, PML-20, CPML-10, PML-10, Hybrid-
20, Hybrid-10, and Higdon.

Modified Marmousi model

We test the modified Marmousi model (Figure 17), whose grid
spacing is Sm, and the grid number is 737 x 751. The upper
boundary of the model is a free surface, and the other three edges
are absorbing boundaries. The source is a Ricker wavelet and the
dominant frequency is of 10 Hz. The source is added on the free
surface and 500 m away from the left-upper corner of the model.
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Fig.18. Shotrecordsand wavefield difference ofa point source on the surface of Marmousi model. (a-/) Higdon boundary; (b-7) Hybrid-10; (c-1) PML-10; (d-1)
CPML-10; (e-1) Hybrid-20; (f-7) PML-20; (g-1) CPML-20; (a-2) wavefield difference between Higdon and CPML-50; (b-2) wavefield difference between
Hybrid-10 and CPML-50; (c-2) wavefield difference between PML-10 and CPML-50; (d-2) wavefield difference between CPML-10 and CPML-50; (e-2)
wavefield difference between Hybrid-20 and CPML-50; (f-2) wavefield difference between PML-20 and CPML-50; and (g-2) wavefield difference between
CPML-20 and CPML-50.
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Fig.19. Shotrecords and wavefield difference of a point source at the bottom of Marmousi model. (a-/) Higdon boundary; (b-1) Hybrid-10; (c-1) PML-10; (d-1)
CPML-10; (e-1) Hybrid-20; (f-/) PML-20; (g-/) CPML-20; (a-2) wavefield difference between Higdon and CPML-50; (b-2) wavefield difference between
Hybrid-10 and CPML-50; (c-2) wavefield difference between PML-10 and CPML-50; (d-2) wavefield difference between CPML-10 and CPML-50; (e-2)
wavefield difference between Hybrid-20 and CPML-50; (-2) wavefield difference between PML-20 and CPML-50; (g-2) wavefield difference between CPML-20
and CPML-50.

Three kinds of boundary conditions are compared numerically: instead. Two groups of receivers are located along the upper
the Higdon boundary, the hybrid ABC (10 and 20 layers), the and bottom boundary, respectively. The interval between two
PML (10 and 20 layers), and the CPML (10 and 20 layers). adjacent receivers is 10 m.

There is no theoretical wavefield available as a reference for the Figures 18 and 19 show the wavefield records obtained by
Marmousi model; thus, we use the 50-layer CPML as a reference the upper and bottom receivers, respectively. The absorption
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performance of the Higdon boundary is poor compared with the
other methods, especially for deeper reflections. This would be
harmful for the full waveform inversion. Whereas, we can see that
the waveforms obtained using the Higdon boundary and hybrid
ABC shown in Figure 18 are fairly close to those obtained using
the PML or CPML. In fact, the artificial reflections may not be so
serious to the migration results as to the full waveform inversion
since the imaging result is not so sensitive to the amplitude. Thus,
the Higdon boundary is still a good candidate for migration
velocity analyses based on reverse time migration, due to its
simplicity and very low computational cost as well as memory
demand.

The absorption performance of the 20-layer CPML is the best
among the three methods listed; however, its computational cost
and memory demand are bigger than that of the 20-layer PML. In
addition, it only shows negligible superiority over the 20-layer
PML for most cases. Therefore, we can use 20-layer PML instead
in most of the middle-sized models (i.e. the usual cases), except
that the source is close to the left or right boundaries, which may
encounter severe grazing effects.

Discussion

In the above three numerical experiments, we use 6; =0 and
0,=m/6 as the angle parameters for the second-order Higdon
boundary. The main consideration is that the accuracy of the
approximation of a one-way wave equation is generally no more
than 7/3 (60°) (Claerbout, 1985; Zhang et al., 2010); thus, we
should not choose large angles. In complex media, we cannot
know the exact incidence angle at the boundary; thus, we only
guarantee that incident angles smaller than 60° can be handled to
reduce the boundary reflections. We use 0; = 0 just as the Clayton
and Engquist boundary does. Then, we select 6,=m/6 (30°),
which is between 0° and 60°. Numerical simulations show that
the absorption effect of the second-order Higdon boundary is
always better than that of the second-order Clayton and Engquist
boundary for a wider angle range. Higher order Higdon boundary
conditions have more controllable angle parameters thus are
more powerful in handling wider incident angles. However,
higher order Higdon boundary conditions would have limited
improvement due to the phase and the amplitude errors that
are associated with the expansion of one-way wave equation
(Claerbout, 1985).

Among the ABC, there is another method not mentioned in
the text, which is called Liao’s ABC (Liao et al., 1984; Liao,
1996). Liao’s ABC extrapolates wave equations in the time and
space domain based on the Newton’s backward differential. This
method is seldom reported in seismic exploration but is widely
used in electromagnetic simulations to absorb the boundary
reflections (e.g. Wagner and Chew, 1995; Wang and Tang,
2010; Zhang and Yu, 2012). Wang and Tang (2010) point out
that Liao’s ABC is closely related to Higdon’s space—time
extrapolation method and has a nice feature of simplicity and
clarity, which is of particular interest for high-order boundary
treatments. To avoid confusion, we classify Liao’s method into
the Higdon boundary condition since the Higdon boundary
condition is already well known in the community, although
Liao’s method (1984) was proposed two years earlier than the
Higdon boundary (1986).

Conclusions

The artificial absorbing boundary condition plays an important
role in the numerical simulation of seismic wavefields. Two main
kinds of methods have been proposed for this purpose: ABCs and
the absorption boundary layers (i.e. the sponge boundary, the

hybrid ABC, and the PML/CPML). We derive similar absorbing
boundary conditions using unified forms first, and then compare
their absorbing performances by theoretical analyses and
numerical experiments.

The Clayton and Engquist boundary has difficulties in dealing
with the corner points, which may result in strong artificial
reflections. The Reynolds boundary deals with corner points
with ease, but has poor absorbing performance, since its
tuning parameter would degrade the absorbing performance
for the low angle incident waves when trying to improve the
absorbing performance for other incident angles. The Clayton
and Engquist boundary is basically a special case of the Higdon
boundary; whereas, the Higdon boundary does not have problems
at corner points and has the best absorbing performance among
these three ABCs. Therefore, we suggest using the Higdon
boundary at any time if one hopes to use the absorbing
boundary condition, when the computational cost and memory
demand are heavy but the demand for the absorbing performance
is not so serious. For example, the migration is not so sensitive
to the weak amplitude distortion caused by artificial reflections.
In contrast, the full wave form inversion would have problems in
the presence of weak amplitude distortion caused by artefacts.

The sponge boundary still has obstacles on determining the
optimal parameters before a series of numerical tests. In addition,
the sponge boundary usually has to use more layers (~30-50) to
guarantee the absorbing performance; however, the PML with
10 or 20 layers would show great superiority over the sponge
boundary both in computational cost and memory demand.
Therefore, the sponge boundary is not suggested all the time
for practical applications and one can use 10- or 20-layer PML
instead.

The PML/CPML is not convenient to implement for the
second-order formulation of acoustic and elastic wave
equations. The hybrid ABC is the only method that can have
comparable performance with the PML/CPML for the second-
order wave equation. The hybrid ABC is easier in implementation
than the PML and CPML, and it has a much better absorbing
performance than the Higdon boundary. However, the hybrid
ABC isstill less efficient for absorbing nearly grazing waves since
it is based on a one-way wave equation.

The 10-layer PML is accurate enough when the nearly grazing
wave is not serious. The 20-layer PML is suggested for
most practical applications for general size models, even in the
presence of strong nearly grazing waves. The main advantage
of PML is that it favours natural implementation of high-order
temporal discretisation if necessary, while CPML does not. To
implement CPML using high-order temporal discretisation, it is
necessary to introduce auxiliary variables and equations, which
will introduce extra costs in both time and memory. The 20-layer
CPML is only necessary when the source is located fairly close to
the boundary for large-scale models, where the nearly grazing
wave is severe.

Acknowledgements

We thank Dr Youshan Liu and Dr Xiao Ma for helpful discussions. We thank
Professor Wei Zhang for helpful instructions on the sponge boundary. We
thank the Associate Editor and two anonymous reviewers for valuable
suggestions and corrections. This research was supported by the National
Natural Science Foundation of China (Grant No. 411304 18) and the National
Major Project of China (Grant No. 2011ZX05008-006).

References

Abarbanel, S., and Gottlieb, D., 1997, A mathematical analysis of the PML
method: Journal of Computational Physics, 134, 357-363. doi:10.1006/
jeph.1997.5717


dx.doi.org/10.1006/jcph.1997.5717
dx.doi.org/10.1006/jcph.1997.5717

Comparison of absorbing boundaries

Exploration Geophysics Q

Appeld, D., and Kreiss, G., 2006, A new absorbing layer for elastic waves:
Journal of Computational Physics, 215, 642—660. doi:10.1016/j.jcp.
2005.11.006

Basu, U., and Chopra, A. K., 2004, Perfectly matched layers for transient
elastodynamics of unbounded domains: International Journal for
Numerical Methods in Engineering, 59, 1039—1074. doi:10.1002/nme.
896

Bayliss, A., and Turkel, E., 1980, Radiation boundary conditions for wave-
like equations: Communications on Pure and Applied Mathematics, 33,
707-725. doi:10.1002/cpa.3160330603

Bécache, E., Givoli, D., and Hagstrom, T., 2010, High-order absorbing
boundary conditions for anisotropic and convective wave equations:
Journal of Computational Physics, 229, 1099-1129. doi:10.1016/j.jcp.
2009.10.012

Bérenger, J. P., 1994, A perfectly matched layer for the absorption of
electromagnetic waves: Journal of Computational Physics, 114,
185-200. doi:10.1006/jcph.1994.1159

Bermudez, A., Hervella-Nieto, L., and Prieto, A., 2007, An optimal perfectly
matched layer with unbounded absorbing function for time-harmonic
acoustic scattering problems: Journal of Computational Physics, 223,
469-488. doi:10.1016/j.jcp.2006.09.018

Bording, R. P., 2004, Finite difference modeling — nearly optimal sponge
boundary conditions: 74th Annual International Meeting, SEG, Expanded
Abstracts, 1921-1924.

Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting
boundary condition for discrete acoustic and elastic wave equations:
Geophysics, 50, 705-708. doi:10.1190/1.1441945

Chew, W., and Liu, Q., 1996, Perfectly matched layers for elastodynamics: a
new absorbing boundary condition: Journal of Computational Acoustics,
4, 341-359. doi:10.1142/S0218396X96000118

Claerbout, J., 1985, Imaging the earth’s interior: Blackwell Scientific
Publications.

Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for
acoustic and elastic wave equations: Bulletin of the Seismological Society
of America, 67, 1529-1540.

Collino, F., 1993, High order absorbing boundary conditions for wave
propagation models: straight line boundary and corner cases: Second
International Conference on Mathematical and Numerical Aspects of
Wave Propagation, SIAM (Newark, Delaware), 161-171.

Collino, F., and Tsogka, C., 2001, Application of the perfectly matched
absorbing layer model to the linear elastodynamic problem in anisotropic
heterogeneous media: Geophysics, 66,294-307. doi:10.1190/1.1444908

Compani-Tabrizi, B., 1986, k-t scattering formulation of the absorptive
acoustic wave equation: Wraparound and edge-effect elimination:
Geophysics, 51, 2185-2192. doi:10.1190/1.1442071

Diaz, J., and Joly, P., 2006, A time domain analysis of PML models in
acoustics: Computer Methods in Applied Mechanics and Engineering,
195, 3820-3853. doi:10.1016/j.cma.2005.02.031

Drossaert, F. H., and Giannopoulos, A., 2007a, Complex frequency shifted
convolution PML for FDTD modelling of elastic waves: Wave Motion,
44, 593-604. doi:10.1016/j.wavemoti.2007.03.003

Drossaert, F. H., and Giannopoulos, A., 2007b, A nonsplit complex
frequency-shifted PML based on recursive integration for FDTD
modeling of elastic waves: Geophysics, 72, T9-T17. doi:10.1190/1.242
4888

Engquist, B., and Majda, A., 1977, Absorbing boundary conditions for
numerical simulation of waves: Proceedings of the National Academy
of Sciences of the United States of America, 74, 1765-1766. doi:10.1073/
pnas.74.5.1765

Engquist, B.,and Majda, A., 1979, Radiation boundary conditions foracoustic
and elastic wave calculations: Communications on Pure and Applied
Mathematics, 32, 313-357. doi:10.1002/cpa.3160320303

Festa, G., and Nielsen, S., 2003, PML absorbing boundaries: Bulletin of the
Seismological Society of America, 93, 891-903. doi:10.1785/012002
0098

Festa, G., and Vilotte, J.-P., 2005, The Newmark scheme as velocity-stress
time-staggering: an efficient PML implementation for spectral element
simulations of elastodynamics: Geophysical Journal International, 161,
789-812. doi:10.1111/1.1365-246X.2005.02601.x

Festa, G., Delavaud, E., and Vilotte, J. P., 2005, Interaction between surface
waves and absorbing boundaries for wave propagation in geological

basins: 2D numerical simulations: Geophysical Research Letters, 32,
1-4. doi:10.1029/2005GL024091

Gedney, S. D., and Zhao, B., 2010, An auxiliary differential equation
formulation for the complex-frequency shifted PML: /[EEE Transactions
on Antennas and Propagation, 58, 838-847. doi:10.1109/TAP.2009.
2037765

Givoli, D., 2004, High-order local non-reflecting boundary conditions: a
review: Wave Motion, 39, 319-326. doi:10.1016/j.wavemoti.2003.12.
004

Givoli, D., and Neta, B., 2003, High-order non-reflecting boundary scheme
for time-dependent waves: Journal of Computational Physics, 186,
24-46. doi:10.1016/S0021-9991(03)00005-6

Hagstrom, T., and Warburton, T., 2004, A new auxiliary variable formulation
of high-order local radiation boundary conditions: corner compatibility
conditions and extensions to first-order systems: Wave Motion, 39,
327-338. doi:10.1016/j.wavemoti.2003.12.007

Hastings, F. D., Schneider, J. B., and Broschat, S. L., 1996, Application of the
perfectly matched layer (PML) absorbing boundary condition to elastic
wave propagation: The Journal of the Acoustical Society of America, 100,
3061-3069. doi:10.1121/1.417118

Higdon, R. L., 1986, Absorbing boundary conditions for difference
approximations to the multidimensional wave equation: Mathematics
of Computation, 47, 437-459.

Higdon, R. L., 1987, Numerical absorbing boundary conditions for the wave
equation: Mathematics of Computation, 49, 65-90. doi:10.1090/S0025-
5718-1987-0890254-1

Higdon, R. L., 1990, Radiation boundary conditions for elastic wave
propagation: SIAM Journal on Numerical Analysis, 27, 831-869.
doi:10.1137/0727049

Higdon, R. L., 1991, Absorbing boundary conditions for elastic waves:
Geophysics, 56, 231-241. doi:10.1190/1.1443035

Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-
grid finite-difference methods for frequency-domain acoustic wave
modelling: Geophysical Journal International, 157, 1269-1296.
doi:10.1111/4.1365-246X.2004.02289.x

Katsibas, T. K., and Antonopoulos, C. S., 2002, An efficient PML absorbing
medium in FDTD simulations of acoustic scattering in lossy media:
Proceedings - I[EEE Ultrasonics Symposium, 1, 551-554.

Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly
matched layer improved at grazing incidence for the seismic wave
equation: Geophysics, 72, SM155-SM167. doi:10.1190/1.2757586

Komatitsch, D., and Tromp, J., 2003, A perfectly matched layer absorbing
boundary condition for the second-order seismic wave equation:
Geophysical Journal International, 154, 146—153. doi:10.1046/j.1365-
246X.2003.01950.x

Kosloff, R., and Kosloff, D., 1986, Absorbing boundaries for wave
propagation problems: Journal of Computational Physics, 63,
363-376. doi:10.1016/0021-9991(86)90199-3

Kristek, J., Moczo, P., and Galis, M., 2009, A brief summary of some PML
formulations and discretizations for the velocity-stress equation of
seismic motion: Studia Geophysica et Geodaetica, 53, 459-474.
doi:10.1007/s11200-009-0034-6

Kuzuoglu, M., and Mittra, R., 1996, Frequency dependence of the
constitutive parameters of causal perfectly matched anisotropic
absorbers: I[EEE Microwave and Guided Wave Letters, 6, 447-449.
doi:10.1109/75.544545

Lan, H., Chen, J., Zhang, Z., Liu, Y., and Zhao, J., 2013, Application of the
perfectly matched layer in numerical modeling of wave propagation
with an irregular free surface: 83rd Annual International Meeting,
SEG, 3515-3520.

Liao, Z. P., 1996, Extrapolation non-reflecting boundary conditions: Wave
Motion, 24, 117-138.

Liao, Z, Huang, K, Yang, B, and Yuan, Y, 1984, A transmitting boundary for
transient wave analyses: Scientia Sinica (Series A), 27, 1063-1076.
Liu, Q., 1998, The pseudospectral time-domain (PSTD) algorithm for
acoustic waves in absorptive media: [EEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 45, 1044-1055.

doi:10.1109/58.710587

Liu, Q., 1999, Perfectly matched layers for elastic waves in cylindrical and
spherical coordinates: The Journal of the Acoustical Society of America,
105, 2075-2084. doi:10.1121/1.426812


dx.doi.org/10.1016/j.jcp.2005.11.006
dx.doi.org/10.1016/j.jcp.2005.11.006
dx.doi.org/10.1002/nme.896
dx.doi.org/10.1002/nme.896
dx.doi.org/10.1002/cpa.3160330603
dx.doi.org/10.1016/j.jcp.2009.10.012
dx.doi.org/10.1016/j.jcp.2009.10.012
dx.doi.org/10.1006/jcph.1994.1159
dx.doi.org/10.1016/j.jcp.2006.09.018
dx.doi.org/10.1190/1.1441945
dx.doi.org/10.1142/S0218396X96000118
dx.doi.org/10.1190/1.1444908
dx.doi.org/10.1190/1.1442071
dx.doi.org/10.1016/j.cma.2005.02.031
dx.doi.org/10.1016/j.wavemoti.2007.03.003
dx.doi.org/10.1190/1.2424888
dx.doi.org/10.1190/1.2424888
dx.doi.org/10.1073/pnas.74.5.1765
dx.doi.org/10.1073/pnas.74.5.1765
dx.doi.org/10.1002/cpa.3160320303
dx.doi.org/10.1785/0120020098
dx.doi.org/10.1785/0120020098
dx.doi.org/10.1111/j.1365-246X.2005.02601.x
dx.doi.org/10.1029/2005GL024091
dx.doi.org/10.1109/TAP.2009.2037765
dx.doi.org/10.1109/TAP.2009.2037765
dx.doi.org/10.1016/j.wavemoti.2003.12.004
dx.doi.org/10.1016/j.wavemoti.2003.12.004
dx.doi.org/10.1016/S0021-9991(03)00005-6
dx.doi.org/10.1016/j.wavemoti.2003.12.007
dx.doi.org/10.1121/1.417118
dx.doi.org/10.1090/S0025-5718-1987-0890254-1
dx.doi.org/10.1090/S0025-5718-1987-0890254-1
dx.doi.org/10.1137/0727049
dx.doi.org/10.1190/1.1443035
dx.doi.org/10.1111/j.1365-246X.2004.02289.x
dx.doi.org/10.1190/1.2757586
dx.doi.org/10.1046/j.1365-246X.2003.01950.x
dx.doi.org/10.1046/j.1365-246X.2003.01950.x
dx.doi.org/10.1016/0021-9991(86)90199-3
dx.doi.org/10.1007/s11200-009-0034-6
dx.doi.org/10.1109/75.544545
dx.doi.org/10.1109/58.710587
dx.doi.org/10.1121/1.426812

R Exploration Geophysics

Y. Gao et al.

Liu, Y.,and Sen, M. K., 2010, A hybrid scheme for absorbing edge reflections
in numerical modeling of wave propagation: Geophysics, 75, A1-A6.
doi:10.1190/1.3295447

Liu, Y., and Sen, M. K., 2012, A hybrid absorbing boundary condition
for elastic staggered-grid modeling: Geophysical Prospecting, 60,
1114-1132. doi:10.1111/.1365-2478.2011.01051.x

Liu, Q., and Tao, J., 1997, The perfectly matched layer for acoustic waves in
absorptive media: The Journal of the Acoustical Society of America, 102,
2072-2082. doi:10.1121/1.419657

Luebbers, R. J., and Hunsberger, F., 1992, FDTD for Nth-order dispersive
media: [EEE Transactions on Antennas and Propagation, 40,1297-1301.
doi:10.1109/8.202707

Marcinkovich, C., and Olsen, K., 2003, On the implementation of perfectly
matched layers in a three-dimensional fourth-order velocity-stress finite
difference scheme: Journal of Geophysical Research - Solid Earth, 108,
18-1-18-16. doi:10.1029/2002JB002235

Martin, R., Komatitsch, D., Gedney, S. D., and Bruthiaux, E., 2010, A
high-order time and space formulation of the unsplit perfectly matched
layer for the seismic wave equation using Auxiliary Differential Equations
(ADE-PML): Computer Modeling in Engineering & Sciences, 56, 17-41.

Nataf, F., 2013, Absorbing boundary conditions and perfectly matched layers
in wave propagation problems: Direct and Inverse Problems in Wave
Propagation and Applications, 14, 219-231.

Pasalic, D., and McGarry, R., 2010, Convolutional perfectly matched layer
for isotropic and anisotropic acoustic wave equations: 80th Annual
International Meeting, SEG, Expanded Abstracts, 2925-2929.

Peng, C, and Toks6z, M. N., 1995, An optimal absorbing boundary condition
for elastic wave modeling: Geophysics, 60, 296-301.

Qi, Q., and Geers, T. L., 1998, Evaluation of the perfectly matched layer
for computational acoustics: Journal of Computational Physics, 139,
166—183. doi:10.1006/jcph.1997.5868

Rabinovich, D., Givoli, D., and Bécache, E., 2010, Comparison of high-
order absorbing boundary conditions and perfectly matched layers in
the frequency domain: International Journal for Numerical Methods in
Biomedical Engineering, 26, 1351-1369. doi:10.1002/cnm.1394

Reynolds, A. C., 1978, Boundary conditions for the numerical solution of
wave propagation problems: Geophysics, 43, 1099-1110. doi:10.1190/
1.1440881

Roden, J. A., and Gedney, S. D., 2000, Convolutional PML (CPML): an
efficient FDTD implementation of the CFS-PML for arbitrary media:
Microwave and Optical Technology Letters, 27, 334-339. doi:10.1002/
1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

Sochacki, J., Kubichek, R., George, J., Fletcher, W., and Smithson, S., 1987,
Absorbing boundary conditions and surface waves: Geophysics, 52,
60—71. doi:10.1190/1.1442241

Sun, W., 2003, Finite difference modeling for elastic wave field in complex
media and global optimization method research [in Chinese]: Tsinghua
University.

Wagner, R. L., and Chew, W. C., 1995, An analysis of Liao’s
absorbing boundary condition: Journal of Electromagnetic Waves and
Applications, 9, 993—-1009.

Wang, T., and Tang, X., 2003, Finite-difference modeling of elastic
wave propagation: a nonsplitting perfectly matched layer approach:
Geophysics, 68, 1749-1755. doi:10.1190/1.1620648

Wang, X, and Tang, S, 2010, Analysis of multi-transmitting formula for
absorbing boundary conditions: International Journal for Multiscale
Computational Engineering, 8, 207-219.

Xie, Z., Komatitsch, D., Martin, R., and Matzen, R., 2014, Improved forward
wave propagation and adjoint-based sensitivity kernel calculations
using a numerically stable finite-element PML: Geophysical Journal
International, 198, 1714-1747. doi:10.1093/gji/ggu219

Xu, Y., and Zhang, J., 2008, An irregular-grid perfectly matched layer
absorbing boundary for seismic wave modeling: Chinese Journal of
Geophysics, 51, 1520-1526. [in Chinese]

Yang, D., Song, G., and Lu, M., 2007, Optimally accurate nearly analytic
discrete scheme for wave-field simulation in 3D anisotropic media:
Bulletin of the Seismological Society of America, 97, 1557-1569.
doi:10.1785/0120060209

Zhang, W., and Shen, Y., 2010, Unsplit complex frequency-shifted PML
implementation using auxiliary differential equations for seismic wave
modeling: Geophysics, 75, T141-T154. doi:10.1190/1.3463431

Zhang, L, and Yu, T, 2012, A method of improving the stability of Liao’s
higher-order absorbing boundary condition: Progress in Electromagnetics
Research, 27, 167-178.

Zhang, J., Wang, W., Wang, S., and Yao, Z., 2010, Optimized Chebyshev
Fourier migration: a wide-angle dual-domain method for media with
strong velocity contrasts: Geophysics, 75, S23-S34. doi:10.1190/
1.3350861

Zhou, B., 1988, On: “k-t scattering formulation of the absorptive
acoustic wave equation: Wraparound and edge-effect elimination” by
B. Compani-Tabrizi (Geophysics, 51, 2185-2192, December 1986):
Geophysics, 53, 564-565. doi:10.1190/1.1442491

www.publish.csiro.au/journals/eg


dx.doi.org/10.1190/1.3295447
dx.doi.org/10.1111/j.1365-2478.2011.01051.x
dx.doi.org/10.1121/1.419657
dx.doi.org/10.1109/8.202707
dx.doi.org/10.1029/2002JB002235
dx.doi.org/10.1006/jcph.1997.5868
dx.doi.org/10.1002/cnm.1394
dx.doi.org/10.1190/1.1440881
dx.doi.org/10.1190/1.1440881
dx.doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
dx.doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
dx.doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
dx.doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
dx.doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
dx.doi.org/10.1190/1.1442241
dx.doi.org/10.1190/1.1620648
dx.doi.org/10.1093/gji/ggu219
dx.doi.org/10.1785/0120060209
dx.doi.org/10.1190/1.3463431
dx.doi.org/10.1190/1.3350861
dx.doi.org/10.1190/1.3350861
dx.doi.org/10.1190/1.1442491

