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the temporal interval is coarse, especially for long-term simulations and large-scale models.
We employ the inverse time dispersion transform (ITDT) to the third-order symplectic
integration method to reduce the time-dispersion error. First, we adopt the pseudospectral

Keywords: algorithm for the spatial discretization and the third-order symplectic integration method
Inverse time dispersion transform for the temporal discretization. Then, we apply the ITDT to eliminate time-dispersion error
Time-dispersion error from the synthetic data. As a post-processing method, the ITDT can be easily cascaded in
Pseudospectral method traditional numerical simulations. We implement the ITDT in one typical exiting third-
Symplectic integration method order symplectic scheme and compare its performances with the performances of the
Long-term simulation conventional second-order scheme and the rapid expansion method. Theoretical analyses

and numerical experiments show that the ITDT can significantly reduce the time-dispersion
error, especially for long travel times. The implementation of the ITDT requires some
additional computations on correcting the time-dispersion error, but it allows us to use
the maximum temporal interval under stability conditions; thus, its final computational
efficiency would be higher than that of the traditional symplectic integration method
for long-term simulations. With the aid of the ITDT, we can obtain much more accurate
simulation results but with a lower computational cost.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Seismic modeling is an important foundation for exploration seismology, and synthetic seismograms are helpful for un-
derstanding wave phenomena in complex media. High-accuracy seismic modeling schemes are essential for high-resolution
seismic interpretations. Seismic modeling methods can be classified into three main categories: direct methods, integral-
equation methods, and ray-tracing methods [1]. The direct methods are the most popular since they can handle complicated
wave phenomena associated with various structures well. The direct methods include three main kinds: finite-difference
(FD) methods [2-4], pseudospectral methods [5-8], and finite-element methods [9]. Some hybrid methods, such as spectral-
element methods [10] and finite-volume methods [11] have also been developed to achieve a much higher accuracy in
numerical simulations.
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For direct seismic modeling methods, both space and time variables need to be discretized. A large sampling interval
of discretization would bring severe numerical dispersion error; in contrast, a small sampling interval could reduce the
numerical dispersion error but would greatly increase the computational cost. Therefore, it is necessary to develop high
accuracy methods that can employ course grids in both temporal and spatial discretizations. Conventional FD schemes for
spatial discretization lead to space dispersion error when computing the space derivatives of the wave equations. A typical
exhibition of the space dispersion error is that the high frequency components of the wavefields do not propagate exactly
with the expected velocity [12]. Numerous methods have been developed to eliminate space dispersion: the high-order
FD schemes [12-16], optimized FD operators [17-26], the flux-corrected transport technique [27-29], the nearly analytical
discrete methods [30,31], the stereo-modeling methods [32], and the pseudospectral methods [5-8].

Numerical discretization of temporal derivatives also introduces numerical artifacts, which are called time-dispersion
error. The time-dispersion error is not as serious as the space dispersion error since it can be greatly reduced using a fairly
small temporal interval. However, in the presence of long-term problems and large-scale models, a small temporal interval
would tremendously increase the computational cost; for such cases, we have to use a large temporal interval to avoid
overburdened computational cost. Unfortunately, a large temporal interval would introduce strong time-dispersion error as
expected. For example, the second-order FD discretization have been widely used [33] due to its simplicity, but an extremely
fine temporal interval is needed to minimize the time-dispersion error since its time-dispersion error is the most serious
among all known methods.

To cope with the time-dispersion error, various methods have been developed, such as high-order time FD schemes [12,
34-37], the rapid expansion method [38-41], low rank methods [42,43], Fourier finite-difference methods [44-46], correc-
tion methods based on filter and interpolation [47-50], and time dispersion transforms [51,52] as reviewed below.

Chen [34] presented three modeling schemes using high-order temporal discretization: the Lax-Wendroff method [1,12,
53], the Nystrom method [54-56], and the splitting method [57-59]. The splitting method is the same as the third-order
symplectic integration method developed by Ruth [57]. Zhang et al. [35] and Zhang and Zhang [37] proposed a one-step
extrapolation algorithm. This algorithm formulates the two-way wave equation as a first-order partial differential equation in
time without suffering from numerical instability or time dispersion problems, which allows for a large temporal interval.
However, their decomposition algorithm, optimized separable approximation [60], is expensive due to too many Fourier
transforms [61].

Fomel et al. [42] approximated the wave extrapolation operators using the low rank approximation of a matrix operator
in the mixed space-wavenumber domain. This method reduces computational cost by optimally selecting reference velocities
and weights [61]. Song and Fomel [44] developed a related method, the Fourier finite-difference method, by cascading a
Fourier transform operator and an FD operator to form a chain operator. The Fourier finite-difference method may have an
advantage in efficiency because it uses only one pair of multidimensional forward and inverse fast Fourier transforms per
temporal interval. However, it does not offer flexible controls on the approximation accuracy [43].

The rapid expansion method [39-41]| incorporates Chebyshev polynomials during the approximation. This method em-
ploys many high orders for the temporal discretization (e.g., 8-order [40]) thus is suitable for large temporal intervals using
concepts similar to the work presented by Tal-Ezer et al. [38]. Instead of using more terms in the expansion, Etgen and
Brandsberg-Dahl [62] generalize the pseudospectral method to obtain pseudo-analytical solutions. They modify the Fourier
transform of the Laplacian operator for the constant velocity model in an arbitrary number of space dimensions.

The time dispersion has proven to be independent of both the velocity model and the space dispersion model; further-
more, it is predictable since it only depends on the frequency, temporal interval, and propagation time [50]. Therefore, the
time dispersion could be handled separately from space dispersion, without considering velocity variations. Liu et al. [49]
formulated an explicit time evolution scheme in the time-space domain by introducing a cosine function approximation, in
which optimum stencils and least-squares coefficients are introduced. Stork [48] proposed that the time-dispersion error is
fully predictable and can be removed with careful filtering after FD modeling. Time dispersion is fixed by applying a time
variable filter and interpolation. Dai et al. [50] showed more details and extended the mathematical analyses on Stork’s
work. Li et al. [47] showed two post-propagation filtering schemes based on the method proposed by Stork [48], and this
type of correction method does not affect the computational efficiency much.

Wang and Xu [51,52] studied the time dispersion of pseudospectral methods and predicted it in theory. To remove
the time-dispersion error, they proposed a time dispersion prediction algorithm (i.e. forward time dispersion transform)
and correction algorithm (i.e. inverse time dispersion transform), which works for any order conventional time FD scheme.
A relatively large temporal interval is allowed for wave propagation, which can greatly retain the computational efficiency
while improving the accuracy [51].

For long-term simulations in large-scale seismic exploration and seismology [34,63-65], the conventional FD schemes on
discretizing the temporal derivatives are not structure-preserving thus are extremely difficult to avoid error accumulations
caused by the time dispersion. We can solve wave equations using symplectic integration methods (or the Hamiltonian dy-
namical systems) to reduce error accumulations [57,66,67]. On the other hand, a large temporal interval that is approaching
the stability upper limit would greatly improve the computational efficiency. However, symplectic integration methods still
suffer from error accumulations at fairly long travel times when using large temporal interval.

In this paper, we incorporate the inverse time dispersion transform (ITDT) [51,52] into the third-order symplectic in-
tegration method to reduce error accumulations when using a large temporal interval. We verify the superiority of our
scheme by comparing it with the conventional second-order scheme and the rapid expansion method (8-order [40]). The
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Table 1
Coefficients of the third-order symplectic integration methods.

P1 P2 D3 a1 q2 k]

Ruth = 3 - 2 -2 1
—7+4/209/2 11 8—,/209/2 2 38 2 38 5

Iwatsu-A 7 2 e s(+y11) 51—y 5
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Iwatsu-B iz ) T s(1—y31) 50+y/1) 3

MLA a3 a2 0 0.919661523017399857 -9 1—q1—q2

computational efficiency is greatly improved since the ITDT allows a large temporal interval that is approaching the stability
upper limit without suffering from error accumulations.

2. Pseudospectral method for spatial discretization

The pseudospectral method is used since its error mainly arises from the temporal discretization [6], which is helpful for
verifying the performance of different schemes on reducing the time dispersion. For simplicity we consider the 2D acoustic
wave equation

Pu L, (%u  u

a0 =<5+ 52 M
where u(x, z, t) is the wavefield, and c(x, z) is the velocity. The pseudospectral method for equation (1) reads [6]

3u

a2
where Fj and F; are 1D forward Fourier transforms along the x- and z-directions, respectively; F, and F; are 1D inverse

Fourier transforms along the x- and z-directions, respectively; ky and k, are wavenumbers along the x- and z-directions,
respectively.

= A {F [ Ff )] + F; [-k2FF an]}, 2)

3. Symplectic integration method for temporal discretization

The symplectic properties guarantee that the numerical solution evolves in the same system as the solution of the orig-
inal continuous differential equation; thus, the symplectic integration methods have a remarkable capability for long-term
simulation [56]. The symplectic integration method consists of several substeps for one-step computation [57-59]. A typical
symplectic integration method for equation (2) reads [34]

VIO =S 4 At Fr[—K2FT (D) + Fy [=k2FF (s 1)]),

w® =D g At D ) i=1,2,- 1, 3)
where the superscripts s(i) denote that the intermediate result, vS¢) is the intermediate variable, and u5©® = y" ~ u(nAt),
vSO =y~ y(nAt), uD =y ~ y[(n+ 1)At], and v¥D = v+ x~ y[(n 4+ 1) At]. There are I substeps needed to obtain the
results from time level n to time level n + 1. The intermediate variables p; and gq; are the coefficients of the symplectic
integration method in the i-th substep.

We concentrate on the third-order symplectic integration method (i.e. I = 3), since it is better in accuracy than the
second-order one for long-term problems [34]. The complete expression of equation (3) reads [34]

v = 5@ 4 p1Atc2{Fx’ [—k,z(FX*(uS(O))] +F; [—Ichj(uS(O))]},

5D Z 15O 4 g ArysD),

P 4 gy A R [ )]+ E [ )]

85O — 15D 4 g ALy D,

VO 4 gy A R [ PP + E [ )]

85O — 15D 4 g Aryd), )

where p1, p2, P3, q1, q2, and g3 are the coefficients for the third-order symplectic integration method. The values of the
coefficients p; and gq; were first given by Ruth [57]. McLachlan and Atela [68] derived a new set of optimized coefficients
based on the minimum truncation error method [69]. Iwatsu [70] gave two new solutions by modifying the solving algo-
rithm that given by Ruth [57]. We call the coefficients given by Ruth [57], McLachlan and Atela [68], and Iwatsu [70] the
following names: Ruth, MLA, Iwatsu-A, Iwatsu-B, respectively. These four sets of coefficients are shown in Table 1.
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Table 2
Stability upper limits vp and time dispersion upper limits when |0 (w, At) — wAt| <5 x 1074
for different schemes. Number in the parentheses represents the points per period T =2 /v.

Vo v(|0(w, At) — wAt| <5 x 107%)
2-order 2 (3.14159) 0.2285 (27.4975)
Ruth 250748 (2.50748) 0.9197 (6.8318)
Iwatsu-A 2.66590 (2.35687) 11699 (5.3707)
Iwatsu-B 157278 (3.99495) 03751 (16.7507)
MLA 4.52009 (1.39006) 1.0753 (5.8432)

4. Stability condition

We first make a simple variable transform v*®) = AtvS® in order to obtain polynomials in terms of ckAt. Equation (3)
can be expressed as

75O — gsi-1 _ p,'AtZCZkZUS(i_])
Us®O = gD 4 qvsh ) i=1,2,... 1, (5)
where V and U are the Fourier transformation of v and u, respectively. Equation (5) is equivalent to

M;

vs® 1 —p;At3c2k? ysi=1 )
[US(D ] = [Qi 1—pigiat2k || usa-o | i=1,2,.--,1, (6)

where the transformation matrix M is expressed as [70]

M = MsMyM; — [ 14+a11v? + byt a12v? + bpv? + 1208 ] ]

ax1 +ba1v? + vt 1+ axnv? 4+ bpvt 4 cpu
with
air =—(p2q1 + p3q2 + p3q1). b11 = p2p3q14a2,
a12=—(p1+p2+p3),  bi2=p1p2gi +p1P3q2 + P1P3q1 + P2P3q2,
€12 = —P1P2P349192,
a1 =¢1+q2+4gs, ba1 = —(p2g193 + 29192 + P39293 + P39143),
€21 = P2P3414243,
az2 = —(p193 + p293 + p192 + p1q1 + P29z + p3q3),
b2 = p1P24143 + P1P29192 + P1P39143 + P2P3G243,
€22 = —P1P2P34919293,

U =ckAt =wAt, and w =27 f (f is the frequency). To obtain the eigenvalue A of M, we can solve

A% — tr(M)A 4 det(M) =0, (7)
where tr(M) is the trace of matrix M, and det(M) is the determinant of matrix M. The solution of equation (7) is
2
tr(M tr(M
o= 100 TS0, ®

where

tr(M) =2 — (p1q1 + P2g1 + P3d1 + P1q2 + P242 + P3Gz + P1q3 + P2q3 + p3q3)v?
+ (P1DP29192 + P2P39192 + P1P29193 + P1P391493 + P1P3G293 + p2P3CI2CI3)U4 - p1P2P3CI1CI2CI3U6,

and det(M) =1.

The stability limit for equation (4) is obtained by requiring |A| < 1. Table 2 shows the stability upper limits vy of v
for five schemes: (a) the traditional pseudospectral method with the second-order time FD discretization [6], which is
abbreviated as ‘2-order’; (b) Ruth; (c) Iwatsu-A; (d) Iwatsu-B; and (e) MLA. Obviously, the stability upper limit of Iwatsu-B
is the smallest (even smaller than that of 2-order); and the stability upper limit of MLA is the largest among all of the five
schemes.
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Fig. 1. Comparison between the phase shift 6 (w, At) and the theoretical phase shift wAt for the second-order time FD scheme as well as several third-order
symplectic integration schemes. (a) is the phase shift 6(w, At) for different schemes; (b) is the dispersion error |0(w, At) — wAt| for different schemes;
(c) is an enlarged portion of (b).

5. Inverse time dispersion transform

Denoting the amplitude of the wave propagation by a constant vector [Aq, A2]7, the expression [V", U"]T in equation (6)
can be decomposed into
[vn Ay .
o } = [ 4, :| expli(wt — kyx — k;2)].

Similarly, [V"+!, U™T can be decomposed into

yn

[yt A ) v .
| yn+ ] = [A; ] expli(w(t + At) — kyx —k;z)] = [ U ] exp(iwAt).

Equation (6) can be rewritten as

w5 5]
thus, we have A = exp(iwAt). According to
exp(iwAt) = cos(wAt) +isin(wAt) = cos(wAt) + \/W,
which has the same form as equation (8); thus, we can obtain the time dispersion of equation (4) as

cos(wAt) = tr(zM) . 9)

If we consider wAt on the left side of equation (9) as a function of 8(w, At), it should be expressed as [51]
tr(M)
6 (w, At) = arccos — ) (10)

Fig. 1(a) shows the comparison between the phase shift 6(w, At) of different schemes and the theoretical phase shift
wAt according to equation (10). When the circular frequency w is low and the temporal interval At is small enough,
6(w, At) is close to wAt. Fig. 1(b) shows the absolute time-dispersion error |6(w, At) — wAt|, which would grow up with
an increasing temporal interval and circular frequency.
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Fig. 2. Waveforms and the amplitude errors. The traces are recorded at a fixed point (x = —3000 m, z= 3000 m). (a), (c), and (e) are waveforms around 4.5,
13.8, and 23.7 s, respectively; (b), (d), and (f) are amplitude differences between different schemes and MLA with At =1 ms (as a reference), respectively.

Table 2 shows the time dispersion upper limits for different schemes when |6(w, At) — wAt| <5 x 1074, Obviously,
Iwatsu-A has the largest dispersion upper limit among the five schemes, as shown in Table 2. Meanwhile, we can see that
MLA has a smaller time-dispersion error at high frequency and large temporal interval (when wAt > 1.85) than Iwatsu-A
does, as shown in Fig. 1(b) and 1(c). Within the stability conditions, a coarse temporal interval always means less com-
putational cost than a fine one does, especially for long-term simulations. The main drawback of using a coarse temporal
interval is that we would encounter a serious problem associated with strong artifacts caused by the time dispersion. Here,
we focus on eliminating the time-dispersion error caused by a coarse temporal interval; thus, we select MLA scheme since
it has the largest stability upper limit among all four third-order symplectic integration schemes listed (i.e., Ruth, Iwatsu-A,

Iwatsu-B, and MLA).
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Fig. 3. Waveforms and the amplitude errors after applying the ITDT. This figure is the same as Fig. 2 except that the ITDT has been applied.

Numerical modeling results usually suffer from time-dispersion error, especially for lone-term simulations. This time-
dispersion error can be predicted by a forward time dispersion transform [51,52]; thus, we can reduce time-dispersion error
by employing the ITDT after numerical modeling. As a post-processing method, the ITDT is applied to each numerically
calculated time trace u(t) in three steps as follows [51]:

(a) calculating 6(w, At) by equation (10) for valid frequencies;
(b) applying the transform: u/(w) = [ u(t)e 0@ A0/Atltqt,

(c) applying the inverse Fourier transform: u'(t) = % fﬁ’(a))ei“’fdw.

and the trace u/(t) corrected by the ITDT can be obtained.
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Fig. 4. Snapshots obtained by MLA using different temporal intervals. (a)-(d) are the snapshots at 6, 12, 18, and 24 s, respectively. (a1), (b1), (c1), and (d1)
are obtained using At =1 ms. (a2), (b2), (c2), and (d2) are obtained using At =7.5 ms. (a3), (b3), (c3), and (d3) are obtained using At =15 ms.

Step (b) can be regarded as a modified version of the Fourier transform, where w is replaced by 6(w, At)/At. As shown
in equation (10), 6(w, At) is the newly defined phase shift, which can truly reflect the influence caused by the temporal
discretization; thus, the time-dispersion error 6(w, At) — wAt can be reduced by using this modified transform. A taper
function should be used on both ends of the trace to avoid Gibbs phenomena. Usually, a Hanning window with 200 points
is good enough in empirical (i.e.,, 100 points for each end).

6. Numerical experiments

We perform numerical experiments on a homogeneous medium. Three schemes are selected: MLA, 2-order, and the
rapid expansion method (REM) [40]. The wave velocity of a square model is v = 3000 m/s. The spatial grid interval is
AXx = Az =50 m, and the grid number is 301 x 301. The source is a Ricker wavelet with a dominant frequency of 10 Hz,
and the source is located at x=0 m and z =0 m. Using the velocity v =3000 m/s and spatial grid interval Ax =50 m, we
can obtain the maximum temporal intervals for MLA and 2-order based on the stability upper limits shown in Table 2. The
maximum temporal intervals for MLA and 2-order are 16.97 and 7.50 ms, respectively. We test several different temporal
intervals: At =1 and 7.5 ms for 2-order, At =7.5 and 15 ms for both MLA and REM. The total length of travel time for
each method is 26 s.

The time-dispersion error decreases as the temporal interval becomes smaller. This indicates that a smaller temporal
interval can obtain more accurate simulation results [56]. To examine the results obtained by different methods, we per-
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Fig. 5. Snapshots obtained by MLA using different temporal intervals after applying the ITDT. This figure is the same as Fig. 4 except that the ITDT has been
applied.

formed numerical simulations by MLA with a temporal interval At =1 ms, which can be regarded as a theoretical reference
to examine the accuracy using larger temporal intervals.

We recorded a trace at a fixed point (x = —3000 m, z = 3000 m). Figs. 2(a), 2(c), and 2(e) show the waveforms over
the time around 4.5, 13.8, and 23.7 s, respectively; Figs. 2(b), 2(d), and 2(f) show the amplitude errors of different schemes
using different At (where the reference waveform is obtained by MLA with At =1 ms). For the same scheme, we can see
that the time-dispersion error for a large temporal interval (e.g. MLA with At =15 ms) is more apparent than a small tem-
poral interval (e.g. MLA with At =7.5 ms); meanwhile, the time-dispersion error becomes more and more serious with an
increasing length of travel time. When At =7.5 ms, 2-order is the poorest and REM is the best among all methods without
applying the ITDT. When At =15 ms, REM has visible time-dispersion error while MLA has apparent time-dispersion error,
as shown in Fig. 2(f). 2-order does not work when At =15 ms since its maximum temporal interval according to the sta-
bility upper limit is only 7.50 ms. Even when At =1 ms, 2-order has fairly large time-dispersion error, which is worse than
that of MLA with At =7.5 ms; in contrast, REM has no visible time-dispersion error with At =7.5 ms.

Fig. 3 shows the waveforms and the amplitude errors of different methods after applying the ITDT. Obviously, the
time-dispersion error has been almost perfectly eliminated and the residual error is fairly weak, except for 2-order with
At =7.5 ms. MLA with At =15 ms after applying the ITDT is more accurate than REM with At = 15 ms. The result of
2-order with At =7.5 ms corrected by the ITDT show that 2-order, even applying the ITDT, is not suitable for long-term
simulations with a coarse temporal interval. In contrast, the third-order symplectic integration methods applying the ITDT
are more suitable for long-term simulations because of their low time-dispersion error.
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Fig. 6. Comparison between the records before and after applying the ITDT. The records are obtained on the ground surface using MLA with different
temporal intervals.
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Fig. 7. Comparison between the running times using different schemes with different temporal intervals before and after applying the ITDT.

Fig. 4 shows the snapshots obtained by MLA using different temporal intervals. Figs. 4(a) to 4(d) are the snapshots at
6, 12, 18, and 24 s, respectively. No visible time dispersion appears in the results obtained by temporal interval At =1
and 7.5 ms. In contrast, the time-dispersion error becomes apparent in the wavefield computed by At =15 ms, as shown
in Figs. 4(a3), 4(b3), 4(c3), and 4(d3). Fig. 5 shows the snapshots obtained by MLA using different temporal intervals after
applying the ITDT. Obviously, the time-dispersion error of MLA with At =15 ms is invisible after applying the ITDT.

The records obtained on the ground surface further illustrate the performance of the ITDT on reducing the time-
dispersion error for various schemes with different temporal intervals, as shown in Fig. 6. Obviously, we can see that
MLA with At =15 ms involve heavy time dispersion especially at long travel times, since they are far away from the ref-
erence waveforms. In contrast, after we apply the ITDT to these numerical simulation results, the time-dispersion error can
be significantly reduced. These numerical experiments show that the ITDT is a powerful tool for improving the numerical
accuracy of the third-order symplectic integration method.

Up to now, the ITDT has shown to be effective on reducing time dispersion. In terms of numerical implementation,
however, half of the ITDT could not be implemented effectively since there is no fast algorithm available. Fortunately, the
other half of the ITDT would be very fast since it can take advantage of the fast Fourier transform. In fact, it is not necessary
to perform the ITDT on all traces. We can only perform the ITDT on those traces for output. This is convenient for numerical
simulation since we seldom care about the whole volume of wavefields propagating in the entire model set. On the other
hand, a larger temporal interval can be used after we apply the ITDT, which would save a large number of iteration times;
thus, the total computational efficiency would be much higher for long-term problems. Fig. 7 shows the comparison between
the running times using different schemes with different temporal intervals before and after applying the ITDT. The results
obtained by MLA with At =15 ms after applying the ITDT are better than those obtained by 2-order with At =7.5 ms
after applying the ITDT, as shown in Figs. 3(b), 3(d), and 3(f); whereas, the running time of the former is smaller than that
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of the latter. In addition, with almost the same running time, the results obtained by MLA with At =15 ms after applying
the ITDT are better than those obtained by REM with At =15 ms.

We test the numerical simulation results for a heterogeneous medium, Marmousi model, which is popular in examining
the accuracy of numerical methods for wave propagating in complex structures. In Marmousi model, the velocity contrast
is strong and the multiples are significant. The velocity range of the complete Marmousi model is from 1500 to 5500 m/s.
A Ricker wavelet with a dominant frequency of 10 Hz is used as source, and the source is located at the center of the model.
With the grid size Ax = Az =50 m, numerical experiments show that apparent artifacts arise in low velocity regions, which
would influence the time dispersion. Therefore, we clip the Marmousi model (as shown in Fig. 8) by leaving the minimum
velocity of 2440 m/s. The grid number of the model is 401 x 401. The maximum temporal intervals for MLA and 2-order
are 9.25 and 4.09 ms, respectively. We use At =9 and 4 ms instead for the convenience of numerical comparison. The
waveform is recorded at x =1750 m and z = 1750 m, and the total length of travel time is ~210 seconds.

As shown in Fig. 9, the time dispersion is serious at 200 seconds for 2-order with At =1 and 4 ms. The ITDT can
almost perfectly eliminate time-dispersion error when At =1 ms; meanwhile, it can significantly reduce time-dispersion
error when At =4 ms. The results obtained by REM are accurate when At =1 ms but have obvious travel time error
when At =4 ms. The time dispersion is strong for MLA with At =9 ms, but it is almost perfectly corrected after applying
the ITDT. Obviously, our method is feasible for such an ultra-long travel time, which is ~40 times as big as general cases
(~5 seconds for most practical applications). This shows that our scheme is helpful for overcoming the time dispersion
caused by coarse temporal interval at ultra-long travel time, for both primary and multiple arrivals.

7. Conclusions

The symplectic integration method is a traditional high-accuracy numerical scheme for modeling of the acoustic wave
equation. However, it still suffers from the time-dispersion error for long-term simulation. We incorporate the inverse time
dispersion transform (ITDT) into the third-order symplectic integration method to reduce its time-dispersion error. Both the-
oretical analyses and numerical experiments show that the ITDT is powerful and significant in eliminating time-dispersion
error caused by the symplectic integration method, especially at long travel times. The ITDT allows us to use a much larger
temporal interval which is close to the upper limit under stability conditions. This means that we can save a large number
of iteration times by using the coarsest temporal interval without suffering from the time dispersion. Therefore, the total
computational efficiency after using the ITDT only has a slight increase compared with the original method using small
temporal interval and could be even faster.
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