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ABSTRACT

On 3 September 2017, a strong seismic event occurred at the
North Korean nuclear test site near the border between China
and North Korea. Using P/S-type spectral ratios calculated
from regional seismic data, we identified this event as an ex-
plosion. Using a high-precision relative location method, with
the first North Korean nuclear test as the master event, we
obtained that the epicenter of this explosion was at
41.3018° N and 129.0696° E with a relative location precision
of ~87 m based on the error ellipse. This explosion was fol-
lowed by three moderate seismic events, which occurred 8 min
after the explosion, on 23 September and 12 October 2017,
respectively. The relocation suggests that the first postexplosion
event occurred under the same mountain as the nuclear tests,
but the other two events were located about 8 km to the north-
cast of the explosion. Based on their spectral ratios, these post-
explosion events are clearly distinguished from the explosions.

Electronic Supplement: Table of Pn differential travel times at
individual stations and figures of P» waveforms recorded at
YNB station and compared among North Korean test site
(NKTS) events and spectral ratios from individual stations
and events.

INTRODUCTION

According to the China Earthquake Network Center (CENC)
and many other agencies, a possible explosion with magnitude
my, 6.3 (CENC) occurred in North Korea at 03:30 (UTC) on
3 September 2017 (Fig. 1). The strong shock from this event
could be felt in China—North Korea border areas. The Dem-
ocratic People’s Republic of Korea claimed that it successfully
detonated a fusion device, which was the sixth and the largest
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underground nuclear test, following previous tests in 2006,
2009, 2013, and January and September 2016. As illustrated
in Figure 2, the waveforms from all six explosions were very
similar and characterized by abrupt primary P waves, weak
Lyg phases, deficient Sz phases, and well-developed short-period
Rayleigh waves, which are typical features of shallow explo-
sions. After the explosion, three aftershocks occurred in the
vicinity of the North Korean test site (NKTS) on 3 and 23
September and 12 October 2017, with magnitudes of
M = 4.1, 3.5, and 2.9, respectively (US. Geological Survey
[USGS])). These events were immediately suspected to be addi-
tional nuclear tests. Seismograms for these postexplosion events
are illustrated at the bottom of Figure 2. The dominant
frequencies and relative amplitudes of various phases generated
by postexplosion events are different from those from explo-
sions, suggesting different source time functions and focal
mechanisms (Liu e# 4/, 2018; Tian et al., 2018). Because of
the large magnitude of the 3 September explosion, the after-
shocks were speculated to be collapses of explosion cavities
or induced tectonic earthquakes.

An abundance of broadband digital seismograms was gen-
erated by these events within regional distances. We collected
seismic data from the China National Digital Seismic Network
(CNDSN), Global Seismic Network (GSN), International
Federation of Digital Seismograph Networks (FDSN), and
Full Range Seismograph Network (F-net) in Japan to investi-
gate characteristics of the 3 September 2017 explosion and
three subsequent aftershocks (Fig. 1). Based on a relative loca-
tion method (Schaff and Richards, 2004; Schlittenhardt ez 4.,
2010; Selby, 2010; Wen and Long, 2010; Murphy ez 4/., 2013;
Zhang and Wen, 2013; Zhao, Xie, He, ¢ al., 2017; Zhao, Xie,
Wang, et al., 2017; Pasyanos and Myers, 2018; Xie and Zhao,
2018), we relocated the North Korean underground nuclear
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A Figure 1. Map showing the locations of the North Korean test
site (NKTS) (solid red star), China National Digital Seismic Net-
work (CNDSN), Global Seismic Network (GSN), International Fed-
eration of Digital Seismograph Networks (FDSN), and Full Range
Seismograph Network (F-net) stations used for relocation in this
study. Additionally, the MDJ station and four nearby natural
earthquakes are also denoted. NK, North Korea; SK, South Korea.

tests and three postexplosion events. The epicenter of the 3
September 2017 explosion was ~3.6 km northwest of the
master event, that is, the first nuclear test on 9 October 2006.
Using the P/S spectral ratio method (e.g,, Richards and Kim,
2007; Zhao et al., 2008; Shin ez al., 2010; Murphy ez al., 2013;
Walter et al., 2018; Xie and Zhao, 2018), we confirmed that an
explosion occurred at the NKTS at 3:30 a.m. on 3 September
2017. After about 8 min, the subsequent event was probably a
collapse of the explosion cavity, and the remaining two after-
shocks were likely tectonic earthquakes. Hereafter, we refer to
these six successive North Korean nuclear tests as NKT1,
NKT?2, NKT3, NKT4, NKT5, and NKT6 for convenience.

HIGH-PRECISION RELATIVE LOCATION

The relative location method can provide accurate relative lo-
cations with respect to a master event by measuring the differ-
ential travel times of seismic waves (e.g., Schaff and Richards,
2004; Selby, 2010; Wen and Long, 2010; Murphy ez al., 2013;
Zhao et al., 2014, 2016; Zhao, Xie, He, et al., 2017; Zhao, Xie,
Wang, et al., 2017; Pasyanos and Myers, 2018; Xie and Zhao,
2018). The CNDSN, GSN, FDSN, and F-net supplied an
abundance of P» waveforms, with good quality and no large
azimuthal gaps, for all six North Korean nuclear tests, which
is favorable for us to apply a relative location method to locate
these explosions and their aftershocks with high precision. The
source mechanisms for all explosions are highly similar. The Pz
waveforms at a given station are very similar, with differential
travel times between events, which is mostly due to their rel-
ative locations.

In this study, we extract Pr waveforms for six explosions
from 255 stations. The cross-correlation calculations are then
applied (Schaff and Richards, 2004; Zhao, Xie, Wang, ¢ al.,
2017), resulting in 960 differential travel times. NKT1, whose
location and origin time are obtained from satellite images and
the USGS, respectively (Wen and Long, 2010; Zhao ez al,
2014), is assigned as the master event, and the Pr-wave velocity
in the uppermost mantle bencath the NKTS is fixed to
7.99 km/s (e.g., Zhao et al., 2016; Zhao, Xie, Wang, et al.,
2017). A relative location model is then created with 15 un-
knowns, including longitude, latitude, and origin time, for
NKT2-NKTé. Considering the trade-off between depth and
origin time, the burial depth is not included in the calculation.
During the inversion, a larger search range, namely

20 x 20 km?, is used for NKT6. For NKT2-NKTS5, we
use a smaller range of 2 x 2 km? centered at previously ob-
tained epicenters. An annealing simulation method (Kirkpat-
rick e al., 1983) is then performed to fit the observed Pn
differential travel times, and the solution that minimizes the
L2 norm for differences between the observed and synthetic
Pp travel times contains the expected relative locations and ori-
gin times for the last five explosions. The relocated epicenters
for NKT1-NKT6 are shown in Figure 3 and listed in Table 1.
Although NKT1 was conducted at the southeast NKTS,
NKT2-NKT6 moved westward toward a mountain ~2 km
away. Derived from the error ellipse (Efron, 1983), the preci-
sion of the relative location of NKT6 is ~87 m. The relocation
accuracy strongly relies on the location of the master event.

The above-mentioned seismic networks also recorded data
from postexplosion events. Although the data quality is worse
than that for the explosions, some Pz waveforms can be used
to calculate cross-correlated differential travel times for reloca-
tion (® Fig. S1 and Table S1, available in the electronic supple-
ment to this article; Schaff and Richards, 2004; Zhao, Xie,
Wang, ez al., 2017). However, because of their different mech-
anisms and epicentral locations, the correlation coefficients be-
tween the postexplosion events and explosions are significantly
lower than those between the explosions themselves. After care-
ful visual selection, the available differential travel times for the
postexplosion events are far less than those for explosions.
Therefore, when performing the relative location, we fix the pre-
viously obtained explosion locations to prevent potential meas-
urement errors in the postexplosion events from propagating,
The resultant locations of the postexplosion events show that
the 3 September 2017 aftershock was very close to NKT6, with
less than 200 m in between. The 23 September and 12 October
2017 aftershocks were clustered and located northeast of the
NKTS more than 8 km from NKT6 (Fig. 3).

EVENT DISCRIMINATION

Discriminating underground nuclear tests from natural earth-
quakes relies on differences in the seismic waves that these two
types of sources generate. The explosion source primarily
generates P waves. In contrast, the earthquake source can be
described as a dislocation, which generates an abundance of
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A Figure 2. Normalized vertical-component velocity seismograms recorded at MDJ station for the six known nuclear test explosions and
for three aftershocks after the large test of 2017. The event dates, maximum amplitudes, and epicenter distances are listed on the left. The
marks on the waveforms indicate the apparent group velocities. Whereas the seismograms for the explosions are characterized by
impulsive P-wave onsets, relatively weak Lg phases, and 3- to 5-s short-period Rayleigh waves, the seismograms for the postexplosion
events show different features, that is, lack of high-frequency content for the first aftershock, which may indicate that it was a collapse
event, and amplitude differences between P and S waves for the other two aftershocks, which shows that they were unlikely to be

explosions.

S waves but weak P waves. The P/S spectral ratios, through
reducing effects from propagation and highlighting differences
between source, can provide effective discrimination (e.g., Tay-
lor et al., 1989; Kim et al., 1993; Walter et al., 1995; Xie, 2002;
Fisk, 2006; Walter et 4/., 2007). For NKT1 on 9 October 2006,
Richards and Kim (2007) determined that the event was an
explosion based on the regional P/S spectral ratios. However,
their results derived from single-station data were applicable
only to the high-frequency spectra between 9.0 and 15.0 Hz.
Taking advantage of digital broadband networks in northeast
China, Zhao ez al. (2008, 2014, 2016) and Zhao, Xie, Wang,
et al. (2017) chose 11 high-quality stations with almost purely
continental paths (Fig. 4a) and used seismograms to calculate
spectral ratios Pg/Lg, Pn/Lg, and Pn/Sn (Hartse ¢t al., 1997).
Then, based on magnitude and distance amplitude correction,
spectral ratios from individual stations were corrected for trend
versus distances at individual frequencies followed by calculat-
ing their averages (Walter ez 4/, 1995, 2007; Walter and Taylor,
2001; Zhao et al., 2008). These network-averaged spectral
ratios suppress data fluctuation and effectively expand the avail-
able frequency band for discrimination. With the modified
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method, all previous five North Korean nuclear explosions
can be discriminated from natural carthquakes at frequencies
higher than 2.0 Hz (Zhao et al., 2008, 2014, 2016; Zhao, Xie,
He, et al, 2017; Zhao, Xie, Wang, er al., 2017; Xie and
Zhao, 2018).

For the suspected explosion on 3 September 2017 and
three subsequent aftershocks, five previously confirmed North
Korean nuclear explosions, and four nearby natural earth-
quakes, we calculate P/S spectral ratios Pg/Lg, Prn/Lg, and
Pr/Sr from vertical-component waveforms at cach of these
11 stations (® Fig. S2). Spectral ratios Pg/Lg calculated at
individual stations are shown in Figure 4b. Figure 4c shows
the network-averaged Pg/Lg ratios for all five previous explo-
sions and four natural earthquakes. The red and black dots and
error bars are average values and standard deviations for all ex-
plosions and all earthquakes. They can be the templates for
estimating properties of unknown events. Network-averaged
spectral ratios Pg/Lg, Prn/Lg, and Pn/Sn for the 3 September
2017 main event and three subsequent aftershocks are illus-
trated in Figure 4d—f. For comparison, we also include average
spectral ratios for all explosions and all earthquakes. The
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DISCUSSIONS AND CONCLUSION

The regional waveforms generated by NKT6
exhibit striking similarities to those generated by
NKT1-NKTS. Pn waveform cross-correlation
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A Figure 3. Map showing the topography and relocated epicenters of the NKTS
events. Open circles with blue error ellipses represent the results from this study,
blue dots represent those given by the U.S. Geological Survey (USGS), and open

squares represent the relocation results from Tian et al. (2018). The

zooms into the source region of NKT6, where crosses are epicenters obtained
using partial information and used to estimate errors based on the bootstrap

method (Efron, 1983).

spectral ratios of the 3 September 2017 main event are very
close to the average values of NKT1-NKT5, indicating it is an
explosion. The three postexplosion events exhibit rather
complex patterns in their spectral ratios. Although they have
generally lower values compared with typical explosions and
are closer to the natural earthquakes, they show some special
features and do not exactly fall into typical earthquake popu-
lation. For the 3 September aftershock (blue lines in Fig. 4d—f),
its spectral ratios at frequencies below 6 Hz are apparently
higher than those from typical earthquakes. On the other hand,
at frequencies higher than 6 Hz, its spectral ratios Pg/Lg and

calculation (Schaff and Richards, 2004; Zhao,
Xie, Wang, et al., 2017) generated 960 differential
travel times, with which the epicenter of NKT6
was relocated and the epicenters of NKT2-
NKTS5 were updated (Zhao ez 4l., 2008, 2012,
2014, 2016; Zhao, Xie, He, et al., 2017; Zhao,
Xie, Wang, ¢t al., 2017; Xie and Zhao, 2018).
We performed an annealing simulation (Kirkpat-
rick et al, 1983) to minimize Pn differential
travel times and searched for the optimal solution.
The resultant epicenter for NKT6 is at 41.3018° N and
129.0696° E, locating on the west side of the mountain and
~3.6 km to the northwest of the master event NKT1. The up-
dated locations for NKT2-NKT5 are consistent with those in
the previous results (Zhao ez 4l., 2008, 2014, 2016; Zhao, Xie,
He, ez al., 2017; Zhao, Xie, Wang, ¢t al., 2017). The relative lo-
cation precision of NKT6 is ~87 m. However, its absolute un-
certainty highly relies on the absolute location of the
master event.

Compared with the epicenter from seismological methods,
satellites can provide visual images of surface damage directly
linked to the explosion. Based on the Mohr—Coulomb failure

129.20°

inset map

Table 1
Best-Fit Locations and Origin Times for Events at the North Korean Nuclear Test Site
North Korea Date Origin Time Standard Location
Nuclear Event (yyyy/mm/dd) (hh:mm:ss.ssss) Deviation (s) Latitude (°N) Longitude (°E) Uncertainty (m)
NKT1* 2006/10/09 01:35:28.0000* 0 41.2874 129.1083" Master event
NKT2 2009/05/25 00:54:43.1409 0.0170 41.2952 129.0778 52
NKT3 2013/02/12 02:57:51.2684 0.0070 41.2932 129.0733 52
NKT4 2016/01/06 01:30:00.9755 0.0059 41.2996 129.0691 70
NKT5 2016/09/09 00:30:01.3812 0.0044 41.2967 129.0818 32
NKT6 2017/09/03 03:30:01.6510 0.0051 41.3018 129.0696 87
PEV1 2017/09/03 03:38:32.7963 0.0914 41.3008 129.0712 360
PEV2 2017/09/23 08:29:15.9110 0.1320 41.3210 129.1700 2020
PEV3 2017/10/12 16:41:08.2134 0.1276 41.3253 129.1729 2020
NKT1, the first North Korean nuclear test; PEV1, the first postexplosion event.
*From U.S. Geological Survey.
"From satellite images (Wen and Long, 2010; Zhao et al., 2014).
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A Figure 4. (a) Map showing the locations of the NKTS (solid red star), station locations of the network for calculating the spectral ratios
(solid black squares and circles), epicenters of the four natural earthquakes (open circles, triangles, and squares), and three unidentified
aftershocks (blue square, green triangle, and circle). (b) Pg/Lg spectral ratios from individual stations and network averages. (c) Light
colored symbols and curves are network-averaged spectral ratios for five known explosions and four natural earthquakes. Red and black
dots and curves are averages from all known explosions and all nature earthquakes. They represent typical spectral ratios for explosions
and earthquakes. The error bars are their standard deviations. (d—f) Network-averaged spectral ratios for NKT6 and three aftershocks. For
comparison, typical spectral ratios for explosions and earthquakes, along with their error bars, are also presented in these figures.

criterion, surface materials can fail when the shear stress ex-
ceeds its shear strength, and failure is more likely to happen at
the critical point where existing shear stress approaches to the
shear strength such as on the peak of a mountain or the edge of
a steep slope. This makes using satellite image to locate a large
explosion such as NKT6 tricky. A large explosion can create
stress variations extended far away from the epicenter. For ex-
ample, NKT6 caused substantial surface disturbance over an
area of ~9 km?, where large displacements occurred on the
west and south flanks, and debris flows were localized in
pre-existing channels (Pabian and Coblentz, 2018; Wang ez al.,
2018). The center of the explosion cannot be easily determined
from these spatially distributed phenomena. In contrast, a
small explosion such as NKT1 tends to produce more localized
surface damage above the epicenter. Therefore, despite a con-
siderable signal-to-noise ratio, we prefer to use NKT1 as the
master event for the relative location.

The P/S spectral ratios, including Pg/Lg, Pr/Lg, and
Pr/Sn, are calculated using an 11-station network. All three

2046 Seismological Research Letters

types of network-averaged spectral ratios show that the main-
shock on 9 September 2017 unambiguously belongs to the ex-
plosion population, confirming it was the sixth North Korean
nuclear test. The results also suggest that network-averaged P/S
spectral ratios, when used as discriminant in the China-North
Korea border area, can reduce data fluctuation and expand the
available frequency band to 2.0 Hz at the low-frequency end
(Kim ez 4., 1993; Richards and Kim, 2007; Zhao ez 4/., 2008,
2012, 2014, 2016; Zhao, Xie, He, et al, 2017; Zhao, Xie,
Wang, ez al., 2017; Xie and Zhao, 2018). Even corrected by
the epicenter distances, there is noticeable scattering in the cur-
rent P/S ratio measurements. This is largely due to the range of
event magnitudes used and complicated local geology. To fur-
ther improve the result, observed spectra for different phases
should be corrected for magnitude and 2D regional attenua-
tion models before calculating the spectral ratios (e.g., Fisk,
2006; Murphy ez al., 2009; Fisk and Pasyanos, 2016).
NKT6 was followed by three aftershocks, which occurred

on 3 September, 8.5 min after the main event, and on
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23 September and 12 October 2017 with decreasing magni-
tudes of M| = 4.1, 3.5, and 2.9, respectively. Their waveforms
exhibit significant differences from explosion seismograms
(Fig. 2) because their P waves are relatively weak, but the
Lg waves are strong. The P/S spectral ratios demonstrated that
these aftershocks can be excluded from the explosion popula-
tion but do not exactly fall onto spectral ratio population for
natural ecarthquakes (Fig. 4d,c). Our relocation results show
that the first aftershock was within 200 m from NKT6, indi-
cating it is possibly due to a collapse of the explosion cavity.
Based on intermediate-period regional wave modeling, both
Liu et al. (2018) and Tian ez a/. (2018) obtained similar focal
mechanisms for the first aftershock. Compared with the natu-
ral earthquake, its spectral ratios have prominent features,
which may be related to its collapse mechanism. Using satellite
radar imagery, Wang ez a/. (2018) revealed substantial surface
subsidence of about 0.5 m at the NKTS, which may be related
to cavity collapse. For the two latter aftershocks, Tian ez 4/.
(2018) and Yao ez al. (2018) suggested that they were about
8 km north of NKT6. Kim er 4l (2018) and Schaff ez /.
(2018) reported that there were a cluster of small earthquakes,
northeast—southwest aligned and located north-northeast to
NKT6, including the two above-mentioned later aftershocks.
However, our relocation revealed that these two aftershocks
were located over 8 km northeast of NKT6 (see comparisons
in Fig. 3). The source mechanisms of three aftershocks are ap-
parently different from those explosions and possibly different
from each other. In addition, their seismograms show low
signal-to-noise ratios because of the low magnitudes. The
resultant low waveform consistency between explosions and
aftershocks brought large errors in calculating differential travel
times, causing relocation uncertainties between aftershocks and
explosions. Nevertheless, all authors agreed that the first after-
shock was under the same mountain as NKT6, and the remain-
ing two aftershocks may have occurred several kilometers away
from NKT6. Therefore, these two later aftershocks were
unlikely directly related to NKT6. The spectral ratios from
these two aftershocks are somewhat in between that from the
first aftershock and typical natural earthquake. Because of lim-
ited information, the mechanisms of these two aftershocks are
not clear. They may result from mechanisms such as a landslide
or collapse or maybe just because they have very shallow sources
compared with the depth of typical tectonic ecarthquakes.
Future investigations are required for these aftershocks.

DATA AND RESOURCES

The waveforms recorded at the China National Digital Seismic
Network (CNDSN), Global Seismic Network (GSN),
International Federation of Digital Seismograph Networks
(FDSN), and Full Range Seismograph Network (F-net) sta-
tions used in this study were collected from the China Earth-
quake Network Center (CENC), the Data Management
Centre of China National Seismic Network at the Institute
of Geophysics, China Earthquake Administration (SEIDMC;
Zheng et al., 2010) at http://www.seisdmc.ac.cn (last accessed

July 2018), the Incorporated Research Institutions for Seismol-
ogy Data Management Center (IRIS-DMC) at www.iris.edu
(last accessed July 2018), and the National Research Institute
for Earth Science and Disaster Prevention (NIED) at http://
www.fnet.bosai.go.jp (last accessed July 2018). K4
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