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How does the rising Tibetan Plateau affect its peripheral region? The current understanding of the mechanism of
orogenic plateau development is incomplete and thus no consensus yet exists in this regard. However, our new
40Ar/39Ar and (U–Th)/He dataset presented in this study may shed some light on this issue. 40Ar/39Ar dating, on
two vertical transects from the massif between Nuomuhong and Golmud, indicates that the Eastern Kunlun
Range was built-up and exhumated during the later Triassic initially, and a minimum overburden of ~11.7–
14.0 kmhas been eroded since ~220Ma. (U–Th)/He age–elevation relationships (AERs) indicate a rapid exhuma-
tion event at ~40Ma following a long period of slow exhumation phase from lateMesozoic to early Eocene time.
In this study, two scenarios – one assuming a single stage and the other assuming multiple stages of evolution
history – are modeled. Modeling of a multiple stage scenario is reasonable and is able to reflect the “actual” sit-
uation, which reveals the entire denudation and relief history of the northern Tibet from late Mesozoic to the
present time. After prolonged denudation before 50Ma, a low topography (~0.17 times the relief of the present)
developed by 50 Ma with an erosion rate of 0.013-0.013+0.025 mm/yr. The highest relief (~1.82 times the relief of the
present) of the Cenozoic time came into being at 40 Ma with an erosion rate of 0.052 ± 0.025 mm/yr, which
was possibly a result of the collision between India and Eurasia. Subsequently, the relief steadily decreased to
the present level due to continued denudation. This suggests that deformation propagation from the continued
convergence boundary between India and Eurasia was insignificant after the construction of the highest relief.
This observation is broadly consistentwith published accounts on the stratigraphic, cooling, and faulting histories
of the northern Tibet margin.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The consequences of the far-field effect of continued Eurasia–Indian
convergence since ~50 Ma (Rowley, 1996; Wang et al., 2011) on the
northern Tibet margin have been a topic of debate (Tapponnier et al.,
2001; Meng and Fang, 2008). This issue is further complicated by a pos-
sible linkage between climate change and the uplift of mountain belts. It
is believed that alternating glacial and interglacial conditions and in-
creased denudation rates during the Late Cenozoic (Zhang et al., 2001;
Molnar, 2004; Valla et al., 2010; van der Beek et al., 2010) can result
in isostatic uplift of mountain peaks (Molnar and England, 1990) and
thus increase unroofing and cooling of an area (Montgomery, 1994;
Small and Anderson, 1998; Champagnac et al., 2007; van der Beek
et al., 2010) through perturbation of the underground thermal structure
eophysics, Chinese Academy of
(Braun, 2003). Erosion occurs mainly in the valleys leading to the high
relief mountain belts. Therefore, understanding the evolution of topog-
raphy requires a better comprehension of the linkage between climate,
tectonics, and surface processes (Beaumont et al., 1992; Zeitler et al.,
2001; Valla et al., 2010).

The terrain along the northernmargin of the Tibetan Plateauhas been
well-studied for its rising-plateau-related tectonics (e.g., Burchfiel et al.,
1989; Van der Woerd et al., 1998; Mock et al., 1999; Jolivet et al., 2003;
Fu and Awata, 2007; Meng and Fang, 2008; Clark et al., 2010). A few re-
searchers have concentrated on quantitative studies of uplift and denu-
dation of the Eastern Kunlun terrain — the main part of the northern
Tibet margin using low-temperature thermochronological techniques,
e.g., 40Ar/39Ar (Mock et al., 1999; Wang et al., 2004), fission track
(Yuan et al., 2006), and (U–Th)/He (Clark et al., 2010; Dai et al., 2013),
fromwhich a cooling history of between 40 and 350 °C can be extracted.
Based on this cooling history, a rapid cooling event around 30 (Mock
et al., 1999;Wang et al., 2004) or 40Ma (Clark et al., 2010) and therefore
the onset time of the initial unroofing of the Eastern Kunlun have been
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deduced. This event has been attributed to early uplift (Mock et al., 1999;
Wang et al., 2004) or faulting (Clark et al., 2010) induced by Tibet rising.
Exhumation rates of between 0.02 and 0.05mm/yr were reported for the
northern part of central segment of the Eastern Kunlun during Late
Oligocene–Early Miocene (Dai et al., 2013).

However, direct evidence of couplings between tectonics and sur-
face processes remains elusive, and quantitative data are needed to bet-
ter constrain denudation evolution and relief history.

A recently developedmethod for inversemodeling is the one that in-
volves the use of the three-dimensional thermal kinematic model
Pecube (Braun, 2002, 2003, Braun et al., 2006), coupled with the
Neighbourhood Algorithm (Sambridge, 1999a, 1999b). Pecube is a ro-
bust finite-element code to solve the 3D heat transportation equation
in a crustal/lithospheric block undergoing uplift and surface erosion,
and is characterized by an evolving, finite-amplitude surface topogra-
phy (Braun, 2003). Following an imposed tectonic scenario, the temper-
ature history of the rocks exhumed at the Earth's surface is derived from
the computed crustal thermal structure. These T–t paths can then be
used to calculate apparent isotopic ages for a range of geochronometers.
The basic set of the Neighbourhood Algorithm is used to find the opti-
mum values of the given parameters of the model that will minimize
the misfit function defined by the difference between the observed
ages and calculations. The method has been fully described by Braun
(2003), Braun et al. (2006) and Valla et al. (2010), and has been success-
fully applied to the estimation of the denudation and relief history of the
Western Alps (van der Beek et al., 2010).

Besides searching for best-fitting model parameters (Braun and van
der Beek, 2004; Braun and Robert, 2005;Herman et al., 2007; Valla et al.,
2010; van der Beek et al., 2010), the crustal thermal structure (Braun,
2003) was also calculated and Bayesian probability-density functions
derived for the parameters estimated (Valla et al., 2010; van der Beek
et al., 2010). In this paper, this method was applied to a new (U–Th)/
He dataset collected along two transects in the northern Tibet margin
(Eastern Kunlun), with the objective of quantifying the crustal thermal
structure, and timing of the denudation and relief development of this
terrain. This study also provides constraints on mechanical models of
orogenic development in northern Tibet, and the far-field effect of rising
plateau.

In the following, a brief geological setting of the study area is first
presented, followed by the thermochronological study of 40Ar/39Ar
and (U–Th)/He. Age–elevation profiles and their conventional implica-
tions regarding cooling and exhumation rates through time are evaluat-
ed. Themodeling approach used in extracting the denudation and relief
histories from the data is summarized, and its implications for under-
standing the tectonic and climatic controls on these histories are
discussed.

2. Geological setting and sample collection

The Eastern Kunlun range, stretching for over 1000 km from east to
west, delimits the Tibetan Plateau in the south, and the Qaidam Basin in
the north (Fig. 1). Being part of the Paleozoic-Triassic collision belt, the
Eastern Kunlun was rejuvenated during the Cenozoic Eurasia–Indian
collision (Matte et al., 1996), and confined by the South Qaidam Fault
in the north and the Kunlun Fault in the south (Fig. 1b, c). The Eastern
Kunlun is dominantly composed of pre-Cenozoic plutonic rocks, Devo-
nian to Early Triassic marine sediments, and Jurassic and Cenozoic
non-marine rocks (Fig. 1c; Liu et al., 2005; Dai et al., 2013). The plutonic
rocks are characterized bywidely spread Early Cambrian to Early Devo-
nian (515–393Ma; Liu et al., 2005; Xiong et al., 2014; Zhang et al., 2010)
and Late Permian to Triassic igneous rocks (261–215 Ma; Harris et al.,
1988; Ding et al., 2014; Huang et al., 2014; Dai et al., 2013).

The Eastern Kunlunwas built during Late Permian toMiddle Triassic
as a result of northwards subduction of Thethys ocean plate under the
Eastern Kunlun and the following collision between Songpan-Ganzi
and Eastern Kunlun blocks (Li et al., 2013; Yang et al., 2005). The
Permian toTriassic sediments in the south of the Eastern Kunlun indi-
cate the remnant of foreland basin (Fig. 1), whichwere reworked inten-
sively by refilling, faulting and folding during Mesozoic and Cenozoic
time (Li et al., 2013; Yang et al., 2005).

Two distinct views are advanced for the mechanism of the tectonic
regime in northern Tibet: (1) thin viscous sheetmodel:most of the con-
vergence between India and Asia is expressed in crustal thickening first
and then propagated northerly by strike-slip faulting in the shallow
crust (England and Houseman, 1986); and (2) synchronous deforma-
tion model: initial deformation in the northern Tibet is coeval with the
onset of collision between India and Asia under the assumption of a
rigid block for the Tibetan Plateau. If the first view is correct, the initia-
tion of the faults, ranges and basins surrounding northern Tibet should
be young. Although numerous phenomena do appear along the north-
ern Tibet margin do appear to have been initiated since Miocene,
e.g., rapid exhumation around 30 Ma (Mock et al., 1999; Wang et al.,
2004), Miocene right-lateral faulting (Wang and Burchfiel, 2004; Fu
and Awata, 2007), a mid-Miocene clockwise rotation of the Guide
Basin (Yan et al., 2006), U/Pb signatures of mountain building at
~8 Ma (Lease et al., 2007) and Miocene crustal shortening (Bovet
et al., 2009), the geological record indicates that the view of initiation
and propagation of deformation away from the initial collision bound-
ary may be incorrect (Clark et al., 2010). The depositional and deforma-
tion history of sedimentary basins shows that the deformation in
numerous localities across northern Tibet could be of Paleocene to Eo-
cene age (Yin et al., 2007; Yin et al., 2008; Meng and Fang, 2008),
which roughly coincides with the onset of the continental collision be-
tween India and Eurasia (e.g. Rowley, 1996; Wang et al., 2011).

Vertical transects on granite rocks were sampled with minimal hor-
izontal offset where possible. Nine samples in total from two transects
were collected for biotite and K-feldspar 40Ar/39Ar dating and apatite
(U–Th)/He dating (Fig. 1c). Note that the closure temperatures of biotite
and the largest domains in k-feldspar are same (~350 °C, e.g. Lovera
et al., 1997, 2002), the ages of biotite and maximum age of k-feldspars
from the same sample should be same. These two ages could support
one another.

In order to increase representativeness, two transects—50 km from
each other, and across the massif between Nuomuhong and
Golmud—were sampled (Fig. 1b). Three samples were collected from
transect 1, and six from transect 2.

3. Analysis techniques

All samples from the two transects were analyzed by using themod-
ern (U–Th)/He dating technique, while two samples from the top (kl5)
and bottom (kl4–2) of transect 1 and three from the top (kl22–2), mid-
dle (kl20–2) and bottom (kl18–2) of transect 2 were conducted with
the 40Ar/39Ar method. All experiments were carried out in the
40Ar/39Ar and (U–Th)/He Laboratory of the Institute of Geology and
Geophysics, Chinese Academy of Sciences (IGGCAS).

The rock sampleswere first mechanically disintegrated and crushed.
Specifically, the coarser shard between 280 and 450 μm and the finer
one between 200 and 75 μm in diameter were separated, respectively,
from the sample during crushing. K-feldspar and biotite grains free of
visibleminerals and fluid inclusionswere selected by hand under a bin-
ocular microscope from the coarser shard, while the apatite crystals
were hand-picked from the finer shard.

K-feldspars were carefully checked to match the criteria or require-
ments for thermochronological study by using the 40Ar/39Ar method
(Lovera et al., 1997, 2002; Lee, 1995). For example, the K-feldspar that
partially changed to adularia, and/or replaced all earlier microtextures
with ultra-porous late feldspar, was eliminated by using electronic mi-
croscope probe analyses. To reveal the argon distribution within the
K-feldspar grain as finely as possible, the high-resolution (36–40 step)
step-heating technique of 40Ar/39Ar analysis was used. Biotite from the
same samplewas also analyzed for comparisonwith K-feldspar. Sample
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Fig. 1. a) Geological sketch map of Tibet and its adjacent area. b) Topography map of study area showing sample location of Transects 1 and 2. c) Sketched geological map of study area
(simplified from BGMR Qinghai, 1991 and Zhang et al., 2014). Ages are from 1) Dai et al., 2013; 2) Harris et al., 1988; 3) Liu et al., 2005 and reference therein.
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processing and laboratory procedures of 40Ar/39Ar analysis were
depicted in Wang et al. (2007, 2009) and detailed in Appendix A.

Each apatite grain was checked carefully under a high-powermicro-
scope in order to exclude those containing impurities and inclusions.
Subhedral, fragmentary, needle-like, or rounded apatiteswere eliminat-
ed, as well as apatites with visible zonations. Then, euhedral apatite
grains longer than 130 μm and wider than 75 μm were wrapped in a
1mm×1mmplatinumcapsule and prepared for He, U and Th analyses.
He was measured by using an Alphachron MK II noble gas mass spec-
trometer, and U and Th on a Thermo Fisher X-Series II ICP-MS. Each of
the wrapped apatite grains was moved into a well one after another in
a stainless steel disk for He measurement. Each grain was heated
twice N1000 °C for 10 min in order to attain complete He extraction.
4He abundance was determined by isotope dilution using a pure 3He
spike, calibrated daily against an independent 4He standard tank. The
uncertainty in the sample 4He measurement averaged b2%.

The degassed apatite grain was removed from the capsule and
placed in a PFA beaker, to which 25 μL of 50% HNO3 with 235U and
230Th spikes were added. A set of reagent blank solutions and spiked U
and Th standard solutionswere treated similarly. The beaker was gently
ultrasounded until the apatite crystal had dissolved. Samples were
diluted in 5% HNO3 and analyzed by isotope dilution for U and Th. A de-
tailed description of analytical procedures can be found in Evans et al.
(2005a, 2005b). Based on replicate analyses of spiked standard solu-
tions, the analytical precision for 235U/238U and 230Th/232Th was deter-
mined to be 0.8% and 0.5%, respectively. (U–Th)/He methods at
IGGCAS yielded an internal precision (1σ) of 1.5%, based on multiple
age determinations of Durango apatite that produced an average age
of 31.5±1.5Ma (Appendix C),which iswell consistentwith the recom-
mended age (McDowell et al., 2005; Reiners and Nicolescu, 2006, Evans
et al., 2005b).

Age calculationwasmade byusing a Java-based program (Helioplot)
(Vermeesch, 2010), and alpha emission correction (Farley et al., 1996)
was done by using measured dimensions of each apatite grain. The
model described by Gautheron and Tassan-Got (2010).
4. Results of 40Ar/39Ar and (U–Th)/He geochronology

Detailed 40Ar/39Ar and (U–Th)/He analytical results are listed in Ap-
pendices B and C, respectively, and are summarized in Table 1 together
with the sampling locations and elevations.
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Table 1
Sample location and mean apatite (U–Th)/He ages.

Sample Longitude Latitude Elevation (m)
40Ar/39Ar Age (Ma)

(U–Th)/He mean agea (Ma)
Biotite plateau age k-feldspar plateau age k-feldspar smallest domain age

Transect 1
kl5 96.4635 36.0575 3601 223.3 ± 1.6 224.8 ± 1.2 129.9 ± 4.9 54.1 ± 5.5
kl7 96.4242 36.1046 3446 33.0 ± 3.1
kl4–2 96.4752 36.2186 3224 222.2 ± 1.1 224.4 ± 1.9 138.2 ± 9.2 24.5±2.0

Transect 2
kl22–2 95.7200 36.2160 4010 224.2 ± 1.2 226.6 ± 1.2 181.8 ± 16.5 82.3 ± 8.6
kl22–3 95.7143 36.2190 3771 63.0 ± 6.7
kl20–2 95.7123 36.2183 3674 223.3 ± 1.2 224.3 ± 1.2 110.3 ± 29.2 66.5 ± 6.4
kl21–3 95.7049 36.2161 3481 40.8 ± 4.1
kl21–1 95.7054 36.2341 3351 36.0 ± 3.5
kl18–2 95.6902 36.2903 3130 222.1 ± 1.2 225.0 ± 1.3 117.1 ± 44.5 32.0 ± 2.9

a Calculated from replicate Ft corrected (Farley et al., 1996) single-grain ages Appendix B.
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4.1. Results of 40Ar/39Ar dating and implications for Mesozoic history of the
Eastern Kunlun range

40Ar/39Ar age spectra of K-feldspars and biotites are illustrated in Fig.
2, and the 40Ar/39Ar age–elevation relationship is shown in Fig. 3.

All biotite aliquots present flat age spectra with well-defined pla-
teaus accounting for more than 90% of total-released 39Ar (Fig. 2, Ap-
pendix B). Biotite plateau ages of samples from the top (kl5) and
bottom (kl4–2) of transect 1 are 224.8 ± 1.2 and 224.4 ± 1.9 Ma, re-
spectively, and do not exhibit differences relative to their elevation
(Fig. 3, Table 1). Biotite plateau ages of samples, from the top (kl22–
2), middle (kl20–2), and bottom (kl18–2) of transect 2, are 226.6 ±
1.2, 224.3 ± 1.2, and 225.0 ± 1.3 Ma, respectively. Although the top
sample is slightly older than the other two, they can be taken as “the
same” ages if errors are considered (Fig. 2, Table 1). Diffusion loss and
distribution of argon isotopes in mineral, which defines the 40Ar/39Ar
age of the mineral, are closely related to temperature in geological re-
gimes. Thus, the nature of these biotite 40Ar/39Ar ages reflects cooling
time with a closure temperature of ~350 °C of an exhumation event
(e.g., Lovera et al., 1991). The similar ages from the top and bottom of
the transects suggest that these vertical transects exhumated and
cooled so rapidly that their argon systems were “frozen” at almost the
same time (at least they cannot be recognized within errors), giving a
cooling time passing the closure temperature of ~350 °C.

K-feldspars usually display complex and variable microstructures
usually (Parsons et al., 2013; Cassata and Renne, 2013; Wang et al.,
2014) and, as a result, potentially record 40Ar/39Ar ages over a
range of closure temperatures spanning 200 °C as they cool (Lovera
et al., 2002). These microstructures serve as “domains”, different in
size, in which argon resides, which hold a series of closure tempera-
tures between 350 and 150 °C (Lovera et al., 2002). Thus, K-feldspars
represent an important resource for understanding thermal histories
(e.g. Lovera et al., 1989, Lovera et al., 1991; Lee, 1995; Cassata and
Renne, 2013; Wang et al., 2014). All five k-feldspar samples, from
the top, middle, and bottom of the transects 1 and 2 (Fig. 3), exhibit
flat age spectra, defining good plateaus accounting for N80% of total
released 39Ar at high temperature steps and staircase-shaped age
spectra at low temperature steps of step-heating (Fig. 2). The plateau
ages rane from 222.1 ± 1.2 to 224.2 ± 1.2 Ma, showing no difference
when errors are considered. Moreover, these ages are slightly youn-
ger (e.g., kl22–2 and kl18–2) than or “the same as” (e.g., kl5, kl4–2,
and kl20–2) their counterpart biotites (Fig. 2a,c,d,e, Table 1) if errors
are considered, suggesting that the argon isotopic systems of these
k-feldspars were closed at the same temperatures and times as
those of biotite (~350 °C). Therefore, the similar ages of k-feldspars
from the top, middle and bottom of the studied transects (Fig. 3) sug-
gest that these vertical transects exhumated and cooled rapidly, and
had passed closure temperatures of ~350 °C at the same time around
222.1 to 224.2 Ma.

The age spectra of all k-feldspars at low temperature steps of step-
heating exhibit staircase shapes (Fig. 2, Appendix B). Although the low
temperature portions account for less than 20% of the total released
39Ar (Fig. 2), the nature (e.g., Lovera et al., 1989, 1991; Cassata and
Renne, 2013; Wang et al., 2014) of multi-domains within k-feldspar
suggests that these portions potentially reflect slow cooling and record-
ed cooling ages between ~350–150 °C for transects 1 and 2. All break
points are around 220 Ma (Fig. 2), indicating that the time of transition
changed from a rapid exhumation to a slow one. Theminimum ages are
not uniform (Fig. 2) due to analytical limits on the very small amount of
argon released, which potentially illustrate the final time passing tem-
perature of ~150 °C. The sample kl-20-2 implies that the slow cooling
continued at least to ~110 Ma (Fig. 2d).

In summary, all biotites and k-feldspars show quite consistent
40Ar/39Ar flat age spectra, and the k-feldspars indicate some degassing
in the beginning of the spectra corresponding with the smallest and
less retentive domains. It is consistent with a fast followed by slow ex-
humation of these samples until probably a depth where the ambient
temperature was close to the closure of the smallest domain
(e.g., ~150 °C). The 40Ar/39Ar geochronology on biotites and k-
feldspars of the two transects imply that rocks now at the surface resid-
ed around ~350 °C isotherm during the late Triassic and had cooled to
~150 °C by Middle Cretaceous. Note that although ~350 °C mark ap-
proximately the closure of both the biotite and the largest domain in
K-feldspar, it is a only lower boundof the sample temperature at the ini-
tial of exhumation. Therefore, these results pose a minimum bound on
total exhumation of ~11.7–14.0 km in the Eastern Kunlun Range, as-
suming a paleo-geothermal gradient of 30 °C/km (Qiu, 2002) or
25 °C/km (Clark et al., 2010).

4.2. Results of apatite (U–Th)/He dating and implications for the Cenozoic
history of the Eastern Kunlun range

The advantage of apatite (U–Th)/He dating arises from its ubiquity
and moderately high U and Th content, but more importantly form
the fact that He accumulation in apatite occurs only at temperatures
below ~75 °C (Wolf et al., 1996); Specifically, diffusion removes He as
fast as it is produced by decay at higher temperatures. Therefore, apatite
(U–Th)/He dating results document the latest phase of cooling in the
uppermost crust (Ketcham et al., 1999).

Typically, three to four grains from each sample were analyzed sep-
arately to calculate themean age in this study (Table 1 and Appendix C).
The analysis results (Appendix C) show that more than two grains at
least yielded consistent ages for each sample. The scattered older ages
of some grains in a sample (e.g., kl5 and kl18–2)may arise frommineral
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inclusions with high U and Th concentrations, especially from zircon
and monazite (Ehlers and Farley, 2003) which produce erroneously
highHe age in some apatites. Although carefulmicroscopic examination
of grains to be dated greatly reduces this problem (Farley, 2002), some
inclusions may be too small to detect (Ehlers and Farley, 2003). Fortu-
nately, inclusions tend to be heterogeneously distributed from grain to
grain, causing poor age reproducibility. Thus, age reproducibility is an
indispensable demonstration of the quality of an apatite He age.

Good age reproducibility between grains (Appendix C) indicates
that our new (U–Th)/He ages are reliable. Three samples from transect
1 yield ages of 54.1± 5.5, 33.0± 3.1 and 24.5± 2.0Ma from top to bot-
tom, showing a positive correlationwith elevation (Fig. 4). Similarly, six
samples from transect 2 give ages of 82.3 ± 8.6, 63.0 ± 6.7, 66.5 ± 6.4,
40.8±4.1, 36.0±3.5, and 32.0±2.0Ma from top to bottom, consistent
with the trend of elevation (Fig. 4).

Considering that there is no fault between the transects 1 and 2
(Fig. 1), which may cause differential movement, it can be assumed
that the plutons of transects 1 and 2 were exhumated uniformly, and
no different amounts of fault throw along strike of the South Qaidam
fault. This is an acceptable assumption based on our new 40Ar/39Ar geo-
chronological results above.Moreover, several regional erosion surfaces
preserved at an elevation of ~4600 m throughout the study area were
recognized froma60-m-resolutiondigital elevationmodel (DEM)(Fig. 1),
and they do not show any local tilting. This means that there is no
influence from long-wavelength undulations in the geomorphic surface.
Therefore, it is reasonable to directly integrate transects 1 and 2 to form
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a uniform age–elevation relationship (AER) and discuss them together
(Fig. 4).

(U–Th)/He ages record cooling commonly caused by exhumation,
i.e., rock motion towards the surface of the Earth. In other words,
what processes produced exhumation and when and how fast they op-
erated can be illustrated by (U–Th)/He dating. Usually, these issues are
approached by establishing the (U–Th)/He age distribution with in-
creasing elevation or paleodepth (e.g., Ehlers and Farley, 2003). In
most cases crustal temperatures increase and (U–Th)/He ages decrease
with depth, but the exact pattern of variability depends on the specific
exhumation history (Ehlers and Farley, 2003).

In Fig. 4, the overall pattern of the age–elevation curve of this study
shows two distinct segments: from ~80–40 Ma ages decrease approxi-
mately linearly with elevation suggesting that rock had experienced a
constant exhumation rate at which the He age pattern reached a steady
state. A striking increase in the slope during ~40–~30 Ma (Fig. 4), how-
ever, suggests an increase of exhumation rate, or a rapid cooling event at
~40 Ma. This pattern of age–elevation curve is consistent with one-
dimensional cooling and age–depth relationship (e.g. Ehlers and
Farley, 2003), as implied by the discussion above.

The transition from the gentle to the steeper slope occurred at
~3500 m elevation, which can be considered to be the position of the
paleo-closure isotherm of ~40 Ma. This implies that a 2.0–2.3 km thick
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Fig. 4. (U–Th)/He age–elevation relationship (AER). Solid square denotes the samples of
transect 1 while solid circle represents the samples from transect 2.
overburden could have been removed from the Eastern Kunlun Range
since 40 Ma, given geothermal gradients measured in the Qaidam
Basin (30 °C/km) for Cenozoic (Qiu, 2002), surface temperature
(10 °C), and a range of He closure temperatures (60–70 °C), yielding a
range of denudation rate of 0.05–0.058 mm/yr.

Tectonically, the sudden increase in age–elevation gradient implies
that rapid exhumation could have occurred at ~40Ma,whichmaybe re-
lated to a rapid uplift event under favorable climatic conditions. The up-
lift induced increase of erosion and exhumation, and thus samples
beneath the closure isotherm moved upwards through the isotherm at
almost the same time.

In order to constrain the evolution history of relief and denuda-
tion accurately, quantitative analysis by thermal modeling on
thermochronological data is needed.

5. Thermal modeling of age–elevation data

5.1. Pecube coupled with Neighbourhood Algorithm (NA)

In nature being a forward model to predict cooling history and age,
Pecube, coupled with NA, can be used for back-calculating the parame-
ters concerning the geological past.

Pecube devotes to the case of “temporally-changing” surface topo-
graphical effect on the thermal structure of the underneath crust by
solving the following transient, three-dimensional heat transfer equa-
tion (Carslaw and Jaeger, 1959; Braun, 2003):

ρc
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∂z
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¼ ∂
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∂x
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κ
∂T
∂z

þ ρA; ð1Þ

where T(x,y,z) is the temperature, ρ is the rock density, c is the heat ca-
pacity, υis the vertical rate of rocks relative to the base of the crust, κ de-
notes the conductivity and A is radioactive heat production. This
equation must be solved for a set of boundary conditions. For ease of
use, some assumptions have been made including that thermal proper-
ties such as rock conductivity, heat capacity, density and heat produc-
tion are spatially uniform and constant through time. A full
description of the numerical method is provided in Braun (2003).

The inverse calculation was implemented by using the
Neighbourhood Algorithm (NA) (Sambridge, 1999a, 1999b). NA in-
volves an iterative search in the multi-dimensional parameter space in
order to find sets of input parameters thatminimize themisfit between
observed and predicted data normalized by the squares of the errors:

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XM

j¼1

iα j:mod ‐iα j:dat
iσ j

s
ð2Þ

where N denotes the number of datasets, M is the number of sample of
samples in each dataset, iαj .mod andi αj .dat are the predicted and ob-
served valuse respectively, and iαj is the error on the data (Valla et al.,
2010; van der Beek et al., 2010).

5.2. Modeling: results and evaluations

The input thermo-kinematic parameters used in Pecube are listed in
Table 2. The geometry of the surface topography was extracted from 1-
km-resolution DEMs (GoodyGIS). Changes in relief were incorporated
by only modifying the amplitude of topography but not the shape of
the relief as designed by Braun (2003). This assumption requires inci-
sion mainly occurred in valley and geometry of the drainage system
did not change over the time span modeled. This assumption may not
always satisfy the geological situation, but the long standing peak and
valley and incisionmainly confined in valleys in a region suggest the as-
sumption acceptable (Braun and van der Beek, 2004; Braun and Robert,
2005; Valla et al., 2010 and van der Beek et al., 2010). The Eastern



Table 2
Thermo-kinematic and elastic parameters used in Pecube. Poisson ratio, Young's mod-
ulus and equivalent elastic thickness are used for calculating the isostatic rebound in re-
sponse to relief change. Equivalent elastic thickness is set to a value that simulates
moderate isostatic rebound.

Parameter Value

Crustal thickness (km) 60
Crustal density (kg/m−3) 2700
Sublithospheric mantle density (kg/m−3) 3200
Equivalent elastic thickness (km) 25
Young's modulus (Pa) 1.111

Poisson ratio 0.25
Thermal diffusivity (km2/Myr) 25
Sea level temperature (°C) 15
Atmospheric lapse rate (°C/km) 0
Crustal heat production (°C/Myr) 0
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Kunlun has served as provenance for the Qaidam basin from Late
Mesozoic to the present time constantly, as indicated by the sedimenta-
ry sequence (Meng and Fang, 2008; Guan and Guan and Jian, 2013),
implying the surface runoff system did not change significantly
during Mesozoic although the amplitude of topography may keep
changing.

He diffusion kinetics from Farley (2000) (Durango apatite) were
used in the Pecube calculation of cooling history and theoretical (U–
Th)/He ages (Braun, 2003). Modeling calculation was implemented at
the MPI Computation Laboratory of IGGCAS.

In order to investigate different possibilities of evolutionary history
for the Eastern Kunlun, two scenarios were modeled: Scenario 1, a con-
stant exhumation rate from a high relief over the past 100Ma, and Sce-
nario 2, variable exhumation rate and relief over the past 100Ma. In our
conceptualmodel, we assume that relief increases frompreferential val-
ley incision, i.e., the shape of the topography is constant spatially over
the modeling time span.

Inversionmodeling results for Scenarios 1 and 2 are shown in Figs. 5
and 6, respectively, in which each dot represents a forward model. The
misfit function ψ allows for a direct comparison of inversion runs with
different numbers of data. For this study, the models represented by
M
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assumptions for Scenario 1 are unreasonable and infeasible. (For interpretation of the reference
misfit values b0.5 were considered “satisfying”, as shown by the color
of each dot (Fig. 5, 6).

Scenario 1 assumes a one stage denudation and relief evolution his-
tory, in which the Eastern Kunlun was initially built high and
exhumated completely during later Paleozoic and early Mesozoic, and
constantly eroded over the past 100Ma; Moreover, reactivation caused
by the Cenozoic collision between India and Eurasia did not affect the
relief of Kunlun terrain. Modeling ran over 100 Ma to ensure that all
points, which end up at the surface, cool through the AHe closure tem-
perature. Only one phase (100–0 Ma) was modeled. The relief factor
(R) was set between 0 and 2, denudation rate (D) between 0 and
2.0 mm/yr and paleo-thermal gradient (T) between 15 and 30 °C/km.
The relief factor is defined by Valla et al. (2010) as:

R ¼ Δhi=Δh0 ð3Þ

where Δhi is the maximum difference of height in the study area at i
stage, and Δh0 is the present maximum difference of height.

5000 forward models were calculated for Scenarios 1 (Fig. 5). The
minimum misfit values of the “best” forward models are around 0.623
(Fig. 5)which is slightly bigger than the “satisfying value (0.5)”. The dis-
tribution of the forward modes are not convergent (Fig. 5), and there-
fore do not resolve a unique set of parameters for relief evolution
(R = 0–2.0), denudation rates (D = 0–2.0 mm/yr) and paleo-thermal
gradient (T = 15–30 °C/km). Although the paleo-thermal gradient of
change is constrained in a relatively small range of 17–20 °C/km, the de-
nudation rate and relief factor are sinuous in a wide range of ~0.06–
~0.7mm/yr and ~0.2–~1.5 respectively (Fig. 5). Therefore, themodeling
results for Scenario 1 suggest that the assumptions of a one-stage histo-
ry over the past 100 Ma for the Eastern Kunlun are unreasonable.

Scenario 2 assumes a multiple stage of denudation and relief evolu-
tion history, in which. Relief of Kunlun terrain was rebuilt by the effect
of the collision. In order to reflect the rejuvenation of the EasternKunlun
during the Cenozoic Eurasia–Indian collision, the modeling including
three phases (100–50, 50–40 and 40–0 Ma) with seven associated pa-
rameters: (1) relief factor (R1: 0–2.0) and denudation rate (D1: 0–
2.0mm/yr) during the first stage; (2) relief factor (R2: 0–2)and denuda-
tion rate (D2: 0–2.0 mm/yr) during the second stage; (3) relief factor
isfit
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(R3: 0–2) and denudation rate (R3: 0–2.0mm/yr) during the third stage;
geothermal gradient (T: 15.0–30.0 °C/km).

8500 forward models were calculated for Scenarios 2 (Fig. 6). The
minimum misfit values of the “best” forward models are around 0.051
(Fig. 6) which is much better than the “satisfying value (0.5)”. The dis-
tribution of the forward modes is converge well as shown in Fig. 6,
and a set of parameters for three stages of denudation rates (D1, D2,
D3), relief factors (R1, R2, R3) and paleo-thermal gradient (T) arewell re-
solved (Fig. 6). This means that the assumptions of multiple stages of
denudation and relief evolution history are feasible for the Eastern
Kunlun Belt over the past 100 Ma.

From graphical inspection of Fig. 6, it is further found that the opti-
mum values for these parameters are constrained in small ranges: D1

in 0.3–0.45 mm/yr, D2 in 0–0.05 mm/yr and D3 in 0.04–0.11 mm/yr,
R1 in 1.25–1.58, R2 in 0.1–0.3, R3 in 1.7–2.0 and T in 19.4–21.1 °C/km.

By investigating the statistical properties of the model ensemble
using probability density function (PDF), the most probable values for
the parameters can be obtained (Fig. 7, Table 3) and the uncertainty
can be defined by the standarddeviation of themarginal PDF. Parameter
PDFs confirm three contrasting stages for the exhumation history:
(1) high denudation rates (D1 = 0.37 ± 0.27 mm/yr, Fig. 7b) at
100 Ma; (2) low denudation rates (D2=0.013-0.013+0.025 mm/yr, Fig. 7b) at
50 Ma; and (3) higher denudation rate (D3 = 0.052 ± 0.025 mm/yr,
Fig. 7b) at 40 Ma and the present. Relief history is even more precisely
constrained: R1 = 1.38 ± 0.21 (Fig. 7a) at 100 Ma; R2 = 0.17 ±
0.14 at 50Ma (Fig. 7a); and R3=1.82±0.21 at 40Ma (Fig. 7a). Thermal
gradient is also well constrained as 20.6 ± 2.1 °C/km (Fig. 7c), not
changing for the three stages. AER implies apparent erosion rates
b0.2 mm/yr for several tens of millions years, which suggests that the
changes in geothermal gradient due to heat advection from erosion
were minor (Moore and England, 2001; Ehlers, 2005; Clark et al.,
2010). The changes of relief history with time are graphically shown
in Fig. 8 as 3D perspective plots.

The modeled denudation rates are similar to those inferred di-
rectly from the inspection of AER: 0.013-0.013

+0.025 (modeled) vs
~0.012 mm/yr (AER) at 50 Ma and 0.052 ± 0.025 (modeled) vs
0.05–0.058 mm/yr (AER) at 40 Ma. The modeled geothermal gradi-
ent (20.6 ± 2.1 °C/km) is similar to the previous observations for
the Eastern Kunlun (25 °C/km) (Clark et al., 2010) and the Qaidam
Basin (20–30 °C/km) (Qiu, 2002).

Best-fit Scenario 2 yields the predicted age–elevation relationship
reasonably well compared with the observed (Fig. 8). The thermal his-
tories for each sample predicted by the Pecube show similar cooling
and exhumation pattern (Fig. 9) to the observations from the AER in
Fig. 4: a rapid cooling or exhumation stage between ~40 and ~30 Ma
and a relative slow cooling or exhumation from ~100 to ~50 Ma
(Fig. 9). The thermal history roughly passes the minimum 40Ar/39Ar
ages of k-feldspar (Fig. 9), implying that the cooling or exhumation
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history extracted from (U–Th)/He ages is consistent with what reflects
by 40Ar/39Ar k-feldspar smallest domains (see discussion above).

In summary, ourmodeling results are reasonable and reflect the “ac-
tual” situation. Themodel results can therefore be used to infer a region-
al exhumation and relief history from the data set. However, potential
improvements to our modeling could be provided by more sophisticat-
ed age-prediction models or more realistic evolution scenarios.

Graphically 3D plots of the relief and denudation history of different
stages over the past 100 Ma are illustrated in Fig. 10. Modeled thermal
structures beneath the Eastern Kunlun terrain at different times are il-
lustrated on the sides of the 3D plots. Contours of the temperature
field have been superimposed (Fig. 10). The contours of temperature
show the effect of vertical heat advection, where the isotherms are
Table 3
Values of parameters of input and modeled.

R1 R2 R3 T (°C/k

Input 0–2 0–2 0–2 15–30
Model 1.38 ± 0.21 0.17 ± 0.14 1.82 ± 0.21 20.6 ±
compressed towards the surface and deformed by the high relief surface
topography (e.g., Fig. 10c).
6. Implications for evolution of the Northern Tibet margin and the
far-field effect of rising plateau

6.1. Denudation evolution and relief history of the Northern Tibet margin

Our new 40Ar/39Ar dating on k-feldspar and biotite from the studied
transects suggests that the Eastern Kunlun terrain exhumated and
cooled rapidly in the later Triassic (~220 Ma), and implies a total exhu-
mation of ~11.7–14.0 km since then, assuming a paleo-geothermal gra-
dient of 30 °C/km (Qiu, 2002) or 25 °C/km (Clark et al., 2010). New (U–
Th)/He dating in this study indicates constant and slow exhumation
during ~80–40 Ma, and a rapid cooling event at ~40 Ma.

Inversionmodeling results show that the relief decreased from ~100
to ~50 Ma, increased from ~50 to ~40 Ma, and then decreased again
from ~40 to the present (Fig. 10). Being a part of the Paleozoic-Triassic
collision belt, the Eastern Kunlun was unroofed during ~100–50 Ma,
resulting in the decrease of the relief factor from 1.38 ± 0.21 at
100Ma to 0.17±0.21 at 50Ma (Fig. 10a,b);meanwhile, the denudation
rates decreased sharply from 0.37 ± 0.27 to 0.013-0.013+0.025 mm/yr
(Fig. 10a,b). This possibly suggests that the crust was in a quiet or stable
tectonic setting during ~100–50 Ma. Therefore, unroofing constituted
the first order tectonic movement at the northern Tibet margin during
this period, when high relief areas were denuded and low relief areas
infilled, resulting in a low topography by ~50 Ma (Fig. 10c). From ~50
to ~40 Ma, the relief increased more than tenfold from a factor of
0.17±0.21 to 1.82±0.21 (Fig. 10b,c),with denudation rates increasing
from 0.013-0.013+0.025 to 0.052 ± 0.025 mm/yr, due to the rapid uplift of the
Eastern Kunlun terrain spanning 50–40Ma. Since 40Ma, the highest re-
lief decreased by almost half, from a factor of 1.82± 0.21 to 1.0 at pres-
ent (Fig. 10c,d), suggesting that the crust was relatively stable and
denudation was the main tectonic setting. Rapid uplift of the mountain
ranges at the northern Tibet margin accentuated valley incision that led
to the formation of foreland flexural depressions, such as the Qaidam
m) D1 (mm/yr) D2 (mm/yr) D3 (mm/yr)

0–2.0 0–2.0 0–2.0
2.1 0.37 ± 0.27 0.013 + 0.025/−0.013 0.052 ± 0.025
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and Kumkuli Basins. Consequently, increasing denudation rates could
have resulted in increased sedimentation rates in the basins.

The results of (U–Th)/He AER and inversion modeling have impor-
tant implications for deciphering the orogenic development of the
northern Tibet margin. AER from the two transects suggest that a
rapid denudation/exhumation event occurred around 40 Ma (Fig. 4)
Tempe
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Fig. 10. Perspective viewof inversed relief historywith temperaturefield contoured on sides. a) ~1
c) ~40Ma (R3= 1.82± 0.21, D3= 0.052± 0.025), d) present (R0= 1.0, D0= 0.052± 0.025). Th
white solid line), where the isotherms are compressed towards the surface and deformed by the
after the Eurasia–Indian collision at ~50Ma (Rowley, 1996). This is con-
firmed by the results of inversion modeling, which show that the denu-
dation rate at40 Ma and present is 0.052 ± 0.025 mm/yr (Fig. 10c,d).
This is much higher than the denudation rate of 0.013 ± 0.025 mm/yr
during ~50–40 Ma (Fig. 10b). Our new data of (U–Th)/He ages on the
Central Kunlun and the Qimen Tagh Mountains, and Miocene growth
strata in the Kumukuli Basin, in the range of 39.5–43.2 Ma (authors'
paper under preparation), suggest that the rapid exhumation event
was widespread throughout the Eastern Kunlun Range. Exhumation of
the Central Kunlun Range between 41 and 21Ma is inferred from accel-
erated cooling determined from feldspar multi-domain diffusion
modeling (Mock et al., 1999; Wang et al., 2004). Previous (U–Th)/He
data revealed a rapid exhumation event during 30–45Ma in the Eastern
Kunlun and the Western Qinling Mountains (Clark et al., 2010).

Sedimentation rates in the adjacent Qaidam Basin increased rapidly
during 40–36.6 Ma (Me'tivier, 1996; Cui et al., 1999; Chen et al., 1998;
Wang et al., 2004), implying an increase of denudation rate in the sur-
rounding mountains. Growth strata are extensively preserved from 50
to 40 Ma in the peripheral areas of the Qaidam and Kumkuli Basins
(Bally et al., 1986; Meng and Fang, 2008; Yin et al., 2008). In HoXil
basin, immediately south of the study area, there was rapid sedimenta-
tion around 40 Ma (Wang et al., 2008).

Denudation or exhumation is a result of the combination of climate
and tectonic uplift. Moreover, uplifted high land is preferentially sub-
jected to erosion in a moist and hot climate. It is inferred that the denu-
dation rates of the East Kunlun terrain increased from ~50 to 40 Ma
implying that the terrain had been uplifted during this period, when
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favorable climatic conditions were prevailed. Recent data of
magnetostratigraphy, pollen, and climatic proxies in northern Tibet
and neighbouring areas show that the Eocene–Oligocene Boundary
(~34Ma)marks one of themost pronounced climatic changes of the Ce-
nozoic era, implying the dramatic shift of a “greenhouse” to an “ice-
house” world (Wang et al., 2003; Graham et al., 2005; Dupont-Nivet
et al., 2007; Clark et al., 2010; Sun et al., 2014). The prevalence of a
“greenhouse” climate, which is moist, hot and denudation-friendly, is
attributed to the existence of the Paratethys Sea in the south, before
the early rise of mountain ranges in northern Tibet. The rising land
was denuded mainly by incising valleys (Clark et al., 2010), giving rise
to the highest relief at the northern Tibet margin during Cenozoic at
~40 Ma.

6.2. Implications for the far-field effect of rising Tibet

How does the rising Tibetan Plateau affect the far-northern periph-
eral area? Two contrasting models are proposed in this regard:
(1) northerly propagating strain from the collision boundary between
India and Eurasia (e.g., England andHouseman, 1986); and (2) synchro-
nous deformation with the onset of collision (e.g. Wang et al., 2008;
Clark et al., 2010). The data obtained from this study favors the second
model and suggest that the northern Tibet margin was built-up in the
early phase of India-Eurasia collision history.

Rapid exhumation and the highest relief at ~40 Ma suggest that the
Eastern Kunlun Range was rejuvenated during 50–40 Ma, as an imme-
diate response to the Eurasia–Indian convergence at ~50 Ma (Rowley,
1996), although the plate boundary was located more than 3000 km
away to the south. A growing body of evidence indicates that large-
scale deformation began across the eastern and central portions of
northern Tibet (Rowley, 1996; Clark et al., 2010) within 10 Ma of the
collision between India and Eurasia (41–52 Ma). In other words, the
northmargin of Tibet was built during the early phase of collision histo-
ry. A decreasing relief and increasing denudation rate, from ~40 Ma to
the present, suggest that unroofingwas thefirst-order activity, implying
that uplift was minor and northern Tibet has been rather stable since
~40 Ma. Despite 2000–3000 km of convergence of India and with Eur-
asia since the collision (Molnar and Stock, 2009; Clark et al., 2010),
the northerly propagation of strain was insignificant during the entire
period of collision. A stable boundary that was built-up at the time of
collision cannot be interpreted by the existing indenter models (e.g.
Tapponnier et al., 2001) of continental convergence into a uniform lith-
osphere; instead, it may be better explained by emphasizing the role of
strong heterogeneities in the continental lithosphere or basal tractions
induced by mantle flow (Clark et al., 2010).

7. Conclusions

A new 40Ar/39Ar and apatite (U–Th)/He dataset from transects of the
eastern range indicates aminimum exhumation of ~11.7–14.0 km since
~220 Ma, and a rapid exhumation event along the Eastern Kunlun
Range at ~40 Ma, following a long period of slow cooling from late Me-
sozoic to early Eocene. This process possibly prevailed all along the
northern Tibet margin and was marked by sedimentation in basins,
rapid cooling of mountains and faulting. Inversion modeling of a multi-
ple stage scenario, which elucidates the entire denudation and relief
evolution from ~100 Ma to the present, suggests that the highest relief
was built-up at ~40Ma. Since then, denudation has been the first-order
activity leading to decreased relief until the present, implying that the
northern Tibet margin was relatively stable over the past 40 Myr. The
existing northern Tibet margin was built-up during the early phase of
the collision history, and the northward propagation of continued con-
vergence between India and Eurasia is not significant. This may be at-
tributed to the strength of heterogeneities in the continental
lithosphere or the basal traction induced by mantle flow.
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tecto.2016.03.001.
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