所属系统:地质年代学测定系统
实验室位置:地2楼205
实验室主任:王非 研究员
实验室概况 | 仪器介绍 | 实验室成员 | 工作内容 | 收费标准 | 欢迎来访
40Ar/39Ar和(U-Th)/He年代学实验室拥有多台先进的稀有气体质谱仪和激光探针系统,是国内重要的年代学和热年代学研究平台。40Ar/39Ar法是年代学中的重要手段,测年范围从46亿年的陨石到数千年的火山岩,研究领域从行星演化到地球动力学,从古环境与气候到考古研究,从岩浆活动到板块运动,从元素运移到成矿机制等,涉及到地球与行星科学的各个方面;测年物质广泛,几乎涵盖了所有的的含钾矿物;测年精度高,是确定地质年表及地磁极性年表时标的主要手段。 (U-Th)/He是近二十年来快速发展起来的低温(热)年代学方法,其成功应用大大延伸了中低温热年代学(如40Ar/39Ar,裂变径迹)的温度下限,使其在新构造地质、地貌演化、环境变迁等重大地质问题的研究中具有广阔的应用前景。
长期以来,我们始终把提高定年精度作为主线,加强优势领域的研究,发挥40Ar/39Ar法的独特优势,拓展新的应用方向,建立新的国际标准样品,建设高水平的实验室平台。目前实验室超低的本底水平使得我们能进行微量样品的定年及(超)年轻样品的40Ar/39Ar定年,成为实验室的重要特色之一;同时秉承理论-实验-模拟的理念,发挥40Ar/39Ar热年代学定量的优势,为地质过程热历史的恢复提供最佳模拟手段,进而为深部动力学机制研究提供定量制约。近期结合特提斯演化这一综合科学问题,实验室培育了造山带演化、成矿机制、新生代地貌地形演化历史研究等重要发展方向。
实验室自建立伊始,一直坚持开放共享的理念,成为全球开放的年代学和热年代学知名研究平台,为国内外的地质学家提供了广泛的实验研究;鼓励学生和研究人员到实验室开展研究工作,实地参与样品分析、数据处理和结果解释;广泛参与国际交流,2013年成功举办了Ar-Ar和(U-Th)/He国际研讨会,主持了由澳大利亚Curtin大学、法国国家科研中心、台湾大学、法国蒙彼利埃大学等Ar-Ar实验室参与的国际实验室对比标定计划。
仪器介绍
实验设备:
1) Noblesse 稀有气体质谱仪 (英国Nu Instruments公司),2014年安装,Noblesse采用高效率NIER离子源,新颖的多接收器设计,自动变焦离子镜,先进的仪器控制系统,数据采集和处理系统,显著提高了同位素比值的分析精度,主要应用于激光微量及微区原位Ar-Ar定年和(超)年轻样品的定年。
2)MM5400 稀有气体质谱仪(英国GV 公司),2003年安装,具有低本底、高灵敏度和适中的分辨率,主要用于常规阶段升温Ar-Ar定年和热年代学实验模拟研究。
3)Argus VI 稀有气体质谱仪(Thermo Fisher Scientific公司),2022年安装。ArgusVI是针对氩同位素分析设计的小体积多接收质谱仪。仪器根据氩同位素丰度配备了不同的法拉第杯高阻以及电子倍增器,结合独特的离子束偏转技术可以实现动态多接收以及36Ar等小信号同位素的高精度测量。
4)Photon Machine公司 Analyte G2激光剥蚀系统,配备紫外193nm准分子激光器,2014年安装,用于激光微区原位Ar-Ar定年。
5)美国New Wave 公司MIR10红外激光熔样系统,2004年安装,主要用于单颗粒及多颗粒矿物激光全熔或阶段升温Ar-Ar定年。
6)美国Teledyne Photon Machines公司的10.6 Fusion CO2激光熔样系统,2020年安装,主要用于阶段升温或单颗粒全熔Ar-Ar定年。
7)美国Teledyne Photon Machines公司的二极管激光熔样系统,2020年安装,主要用于群体矿物的阶段升温Ar-Ar定年。激光配备了红外测温系统,可实时监测加热过程的温度变化。
8)澳大利亚科学仪器公司 AlphachronTM He同位素提取系统及四级杆质谱仪,借助精确标定的3He稀释剂,能够准确测定4He的绝对含量,本底低至0.0015 ncc STP
9) Thermo Fisher X2 系列 电感耦合等离子质谱用于U、Th同位素测试,可同时进行U-Pb定年和微量元素分析
10)Resonetics M-50 准分子激光剥蚀系统,最大能量200 mJ(锆石的原位分析通常用90 mJ)用于锆石原位微区分析,是激光原位锆石(U-Th)/He和U-Pb双定年的重要工具
11) 澳大利亚Autoscan公司最新Trackscan裂变径迹测试系统,硬件基于蔡司M2m自动显微镜和高精度电控载物台,软件为墨尔本大学开发的控制软件TrackWorks和离线处理软件FastTracks
12)司特尔LaboSystem自动研磨抛光机,可精确控制磨盘和机头转速以及单点压力。用于裂变径迹、原位Ar-Ar和 (U-Th)/He的样品前处理
实验室成员
杨列坤实验室主任 博士,副研究员,负责实验室研究发展方向及实验室管理 办公室:地3楼311室 | |
王非实验室主任,博士,研究员,负责实验室研究发展方向及实验室管理 办公室:地3楼(综合楼)410室 | |
吴林博士,高级工程师,负责U-Th/He年代学分析测试,接收样品,数据处理及发放 办公室:地1楼208 | |
师文贝博士,高级工程师 ,负责常规及微区Ar-Ar年代学分析测试,仪器运行维护,数据处理及发放 办公室:地1楼208 | |
王银之博士,工程师 ,负责样品接收及辐照,年轻样品分析测试,仪器运行维护,数据处理及发放 办公室:地1楼208 |
本实验室主要进行如下方面的分析测试工作:
实验室建立了完整的Ar-Ar和(U-Th)/He年代学技术体系。其中Ar-Ar定年包括常规阶段升温技术,激光阶段升温技术,单颗粒矿物的激光全熔或阶段升温测定,激光微区原位(通常10-50微米)定年,定年矿物涵盖碱性长石、斜长石、云母,角闪石等常见造岩矿物及火山岩基质,为满足不同地质研究的需求有针对性的设计了相应的实验流程。(U-Th)/He定年方法目前主要包括磷灰石和锆石的单颗粒溶液法定年,锆石的激光原位(U-Th)/He和U-Pb双定年。
主要应用领域:
(1)火山岩及火山沉积地层定年:快速冷却的火山岩是40Ar/39Ar法定年的良好对象,为地层划分和地磁极性确定以及火山活动提供有效的研究手段
(2)构造-热年代学:利用不同矿物的封闭温度及封闭时间和同一矿物中多重扩散域特征,建立中上地壳侵入岩及变质岩的冷却历史,进而探索岩体的抬升过程。发挥Ar-Ar和(U-Th)/He的优势,恢复地质体的抬升和冷却历史、地形的演化过程
(3)微区年代学:结合聚焦<10μm的紫外激光探针测定单颗粒矿物中气体同位素浓度分布,进而探索年龄分布,为反推地质体热历史和变质变形过程提供有力的微区研究手段
(4)稀有气体(如He、Ar)扩散机制的研究,探索气体扩散和温度的关系、矿物封闭机制,架起实验和地质过程的桥梁
送样要求及联系人:
Ar-Ar定年送样要求:
新鲜含钾矿物(如碱性长石、斜长石、云母、角闪石、火山岩基质等),粒度40-60目或60-80目,样品纯净,重量100mg以上,特殊矿物定年、原位微区定年和超年轻地质体定年请联系实验室工作人员。
联系人:师文贝,shiwenbei@mail.iggcas.ac.cn, 010-82998560
(U-Th)/He定年送样要求:
样品分析采用单颗粒熔融法,每个样品分析3-5个颗粒, 测试矿物主要为磷灰石和锆石。要求矿物晶体新鲜、自形好,磷灰石和锆石宽度通常不少于70微米,长度大于100微米。每个样品要求20-50个自形晶体颗粒。如需进行锆石(U-Th)/He和U-Pb双定年,用户需自行制靶(Teflon靶,环氧树脂锆石靶在提取4He时会影响系统的真空度以及本底)并拍摄阴极发光图像,并且自行选取激光剥蚀位置。为获得颗粒完整的磷灰石或锆石,鼓励用户亲自碎样、选矿。
联系人:吴林,wulin08@mail.iggcas.ac.cn,010-82998560
实验方法及应用相关论文:
1. Wu L. et al., 2023, SA01: A new potential reference material for zircon in-situ (U-Th)/He and U-Pb double dating, Journal of Analytical Atomic Spectrometry, doi:10.1039/d2ja00348a.
2. Zhang W.B.et al., 2022, Mountain growth under the combined effects of paleostress and paleoclimate: Implications from apatite (U-Th)/He thermochronology on Taibai Mountain, central China, Lithosphere, 8286127, 10.2113/2022/8286127.
3. Zhang W.B.et al., 2022, Reactivated margin of the western North China Craton in the Late Cretaceous: Constraints from zircon (U-Th)/He thermochronology of Taibai Mountain,Tectonics, DOI: 10.1029/2021TC007058.
4. Guo C.et al., 2022, Late Cenozoic topographic growth of the South Tianshan Mountain Range: Insights from detrital apatite fission-track ages, northern Tarim Basin margin, NW China, Journal of Asian Earth Sciences, 234, 105227.
5. Wang Y.Z.et al., 2022, An investigation of factors affecting the reproducibility of (U–Th)/He ages of high- and low-U minerals, Geochemical Journal, 56(4), 96-111.
6. Wu L.et al., 2021, Reappraisal of the applicability of MK-1 apatite as a reference standard for (U-Th)/He geochronology, Chemical Geology, 575, 120255.
7. Xiang D.F.et al., 2021, Apatite U–Pb dating with common Pb correction using LA–ICP–MS/MS, Geostandard and Geoanalytical Research, 45(4), 621-642.
8. Wang N.et al., 2021, Pulsed Mesozoic exhumation in Northeast Asia: New constraints from zircon U-Pb and apatite U-Pb, fission track and (U-Th)/He analyses in the Zhangguangcai Range, NE China, Tectonophysics, DOI: 10.1016/j.tecto.2021.229075.
9. Gong L. et al., 2021, Exhumation and Preservation of Paleozoic Porphyry Cu Deposits: Insights from the Yandong Deposit, Southern Central Asian Orogenic Belt. Economic Geology, 116(3), 607-628.
10. Wu L. et al., 2020, Meso-Cenozoic uplift of the Taihang Mountains, North China: Evidence from zircon and apatite thermochronology. Geological Magazine, 157(7), 1097-1111.
11. Wang Y.Z. et al., 2020, Timing and Processes of Ore Formation in the Qingchengzi Polymetallic Orefield, Northeast China: Evidence from 40Ar/39Ar Geochronology, Acta Geologica Sinica, 94(3), 789-800.
12. Shi W.B. et al., 2020, 40Ar/39Ar dating of basic–felsic dikes in the Sulu Orogen, Shandong Peninsula, China: Evidence for the destruction of the southeastern North China Craton, Geological Journal, 55(7), 5574-5593.
13. Wu L. et al., 2019, MK-1 apatite: A new potential reference material for (U-Th)/He dating, Geostandard and Geoanalytical Research, 43(2), 301-315.
14. Wu L. et al., 2018, Multi-phase cooling of Early Cretaceous granites on the Jiaodong Peninsula, East China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology, Journal of Asian Earth Sciences, 160, 334-347.
15. Shi W.B. et al., 2018, Diachronous growth of the Altyn Tagh Mountains: Constraints on propagation of the Northern Tibetan margin from (U-Th)/He dating. Journal of Geophysical Research: Solid Earth, 123(7), 6000-6018.
16. Shi, W.B. et al., 2018, A prolonged Cenozoic erosional period in East Kunlun (Western China): Constraints of detrital apatite (U-Th)/He ages on the onset of mountain building along the northern margin of the Tibetan Plateau, Journal of Asian Earth Sciences, 151, 54-61.
17. Wang Y.Z. et al., 2018, (U-Th)/He thermochronology of metallic ore deposits in the Liaodong Peninsula: Implications for orefield evolution in the northeast China, Ore Geology Reviews, 92, 348-365.
18. Wu L. et al., 2017, Cretaceous exhumation of Proterozoic carbonatite on the northern margin of the North China Craton constrained by apatite fission track and (U-Th)/He geochronology, The Journal of Geology, 125(5), 593-606.
19. Wang F. et al., 2017, Differential growth of the northern Tibetan margin: evidence for oblique stepwise rise of the Tibetan Plateau, Scientific Reports, DOI: 10.1038/srep41164
20. Wu L. et al., 2016, Cenozoic exhumation history of Sulu terrane: Implications from (U–Th)/He thermochrology. Tectonophysics, 672–673, 1-15.
21. Wang F. et al., 2016, Relief history and denudation evolution of the northern Tibet margin: constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau, Tectonophysics, 675, 196-208.
22. Wu L. et al., 2014, Rapid cooling of the Yanshan Belt, northern China: constraints form 40Ar/39Ar thermochronology and implications for cratonic lithospheric thinning. Journal of Asian Earth Sciences, 90, 107-126.
23. Yang L.K. et al., 2014. 40Ar/39Ar geochronology of Holocene volcanic activity at Changbaishan Tianchi volcano, Northeast China. Quaternary Geochronology, 21, 106-114.
24. Wang F. et al., 2014, YBC sanidine: A new standard for 40Ar/39Ar dating. Chemical Geology, 388, 87-97.
25. Wang F. et al., 2013, 40Ar/39Ar Thermochronology on Central China Orogen: Cooling, Uplift and Implications for the Orogeny Dynamics. In: F. Jourdan, D.F. Mark, C. Verati Eds., 40Ar/39Ar dating: from geochronology to thermochronology, from archaeology to planetary sciences. Geological Society, London, Special Publication, 378, http://dx.doi.org/10.1144/SP378.3
本实验室数据支持发表的应用论文:
1. Li J. et al., 2023, Tectonic setting of metamorphism and exhumation of eclogite-facies rocks in the South Beishan orogeny, northwestern China, Geosphere, 19(1), 100-138.
2. 李晨星等,2022,华北克拉通北缘中-新元古界构造-热演化:来自锆石(U-Th)/He年龄的约束,地质力学学报,28(1), 113-125.
3. 林旭 等,2022, 苏鲁造山带东段新生代构造隆升及其地质意义:来自磷灰石(U-Th)/He热年代学的约束, 地球科学,47(4), 1162-1176.
4. Yang H. H. et al., 2022, Thermal history of the Naruo porphyry deposit in the Duoling ore district, Western Tibet: Evidence from U-Pb, 40Ar/39Ar and (U-Th)/He thermochronology, Acta Geologica Sinica (English Edition), 96(6), 2015-2027.
5. Yang H. H. et al., 2022, The preservation mechanism of the Duolong ore district in northwest Tibet: Evidence from the low temperature thermochronological study, Ore Geology Reviews, 143, 104766.
6. Pang Y. M. et al., 2022, Emplacement and exhumation history of Mesozoic granitic rocks in the Jiaonan uplift, eastern China, Journal of Asian Earth Sciences, 234, 105289.
7. Shen P. et al., 2022, Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal fertility and connection with the No. 3 pegmatite, Gondwana Research, 112, 24-51.
8. Xin G. Y. et al., 2022, Subduction initiation in the Neo-Tethys and formation of the Bursa ophiolite in NW Turkey, Lithos, 422-423, 106746.
9. 贠晓瑞等,2021,青海共和盆地东北缘中-新生代热演化历史:来自沟后杂岩体及当家寺岩体的低温热年代学证据,岩石学报,37(10), 3241-3260.
10. Zhao W. C. et al., 2021, Thermochronological constraints on the exhumation history of the Carboniferous Katebasu gold deposit, western Tianshan gold belt, NW China, Geological Society London Special Publications, 516, https://doi.org/10.1144/SP516-2020-201.
11. Wang Y.S. et al., 2021, Exhumation history of late Mesozoic intrusions in the Tongling–Xuancheng area of the Lower Yangtze region, eastern China: Evidence from zircon (U–Th)/He and apatite fission track thermochronology, Ore Geology Reviews, 135, 104220.
12. Du J.X. et al., 2021, Cenozoic tectono-geomorphic evolution of Yabrai Mountain and the Badain Jaran Desert (NE Tibetan Plateau margin), Geomorphology, 389, 107857.
13. Chu Y. et al., 2021, Tectonic exhumation across the Talesh-Alborz Belt, Iran, and its implication to the Arabia-Eurasia convergence, Earth Science Reviewes, 221, 103776.
14. Lv L.X. et al., 2021, Late Cenozoic thrust propagation within the Keping fold-and-thrust belt along the southern foreland of Chinese Tian Shan: Evidence from apatite (U-Th)/He results, Tectonophysics, 814, 228966.
15. Qian X.Y., 2021, Apatite and zircon (U-Th)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range, Geological Journal, 56, 599-611.
16. Yu S. et al., 2020, Further Evaluation of Penglai Zircon Megacrysts as a Reference Material for (U-Th)/He dating, Geostandard and Geoanalytical Research, 44(4), 763-783.
17. Chu Y. et al., 2020, Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed unroofing of an orogenic plateau across the South China Block? Tectonophysics, 793, 228592.
18. Wang Y. et al., 2020, Intracontinental deformation within the Inidia-Eurasia oblique convergence zone: Case studies on the Nantinghe and Dayingjiang faults, The Geological Society of America, 132(3-4), 850-862.
19. Wang Y.B. et al., 2020. Porphyry Mo and epithermal Au-Ag-Pb-Zn mineralization in the Zhilingtou polymetallic deposit, South China, Mineralium Deposita, 55(7), 1385-1406.
20. Sun, X. et al.,2021, New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Miner Deposita, 56, 917–934.
21. 郑波等, 2020,羌塘地块白垩纪剥蚀-冷却事件,地质论评,66(5),1143-1154.
22. Chen Z.X. et al., 2018, U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough: Implications for petrogenesis. Journal of Asian Earth Sciences, 161, 1-13.
23. Lin W. et al., 2013, Late Mesozoic compressional to extensional tectonics in the Yiwulvshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt--Part I: Structural analyses and geochronological constraints. Gondwana Research, 23, 54-77.
24. Lin W. et al., 2013, Late Mesozoic compressional to extensional tectonics in the Yiwulvshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt--Part II: Anisotropy of magnetic susceptibility and gravity modeling. Gondwana Research, 23, 78-94.
收费标准
Ar-Ar:
|
常规阶段加热 |
激光单颗粒熔融 |
激光原位定年 |
所内 |
8000元/样品 |
8000元/样品 |
400元/点 |
所外 |
10000元/样品 |
10000元/样品 |
500元/点 |
U-Th/He:
|
磷灰石锆石常规单颗粒溶液法 |
(U-Th)/He和U-Pb双定年 |
所内 |
1500元/颗粒 |
400元/点 |
所外 |
2000元/颗粒 |
500元/点 |
合作研究价格给予一定优惠。